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Abstract

Extreme value analyses of meteorological quantities, such as precipitation, or temperature, are of

great importance in design engineering and risk management. Since 2016, MeteoSwiss has made

extreme value analyses of precipitation publicly available for more than 300 stations of its observational

network. The present report provides users with a “manual” for understanding and interpreting these

analyses; it documents the data used and the statistical methods employed. It is meant for engineers

and other experts familiar with basic statistical concepts. The report is structured in several parts. The

first chapter describes and explains the contents of the analysis sheets, the second documents the

underlying data, and the third is dedicated to the theoretical background. Further chapters are short

analyses addressing issues related to the contents of the web platform.

Zusammenfassung

Extremwertanalysen von meteorologischen Grössen, wie Niederschlag oder Temperatur, sind von

grossem Interesse für Dimensionierung und Risikomanagement. Seit 2016 stellt MeteoSchweiz Ex-

tremwertanalysen von Niederschlag an mehr als 300 Stationen ihres meteorologischen Messnetzes

der Öffentlichkeit zur Verfügung. Dieser Bericht liefert eine “Bedienungsanleitung”, um diese Analysen

zu verstehen und zu intepretieren und dokumentiert die zugrundeliegenden Daten und Methoden. Er

richtet sich an Ingenieure und andere Experten, die statistisches Grundlagenwissen besitzen. Der

Bericht ist wie folgt gegliedert: Das erste Kapitel beschreibt und erklärt die Inhalte der Analyse-Blätter.

Das zweite Kapitel dokumentiert die zugrundeliegenden Daten und das dritte Kapitel befasst sich mit

den nötigen theoretischen Grundlagen. Weitere Kapitel sind kurze Analysen im Zusammenhang mit

dem Inhalt der Webplattform.

Technical Report MeteoSwiss No. 255, 3rd Edition
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1 Introduction

Switzerland has witnessed a number of weather events causing devastating floods in the last decades,

as for instance in August 2005, when a large part of the Swiss northern Alpine rim was affected. Such

events raise questions regarding adequate planning of infrastructure based on reliable statistical esti-

mates. The latest official documents on the matter were compiled by the Federal Institute for Forest,

Snow and Landscape Research (WSL) in the 70s and 80s, and are outdated, both in terms of precipi-

tation data and of statistical methods.

As a federal office operating a broad network of meteorological observation stations, MeteoSwiss has

a public responsibility to provide information on the severity of rare events. In a first step, a web page

(http://www.meteoswiss.ch/home/klima/vergangenheit/extrem-niederschlaege.html) was

set up on the website of MeteoSwiss at the end of 2013, presenting extreme value analyses of 1-day, 2-

day, and 3-day precipitation at 27 stations of the MeteoSwiss observational network. On the instigation

and with the support of the Federal Office for the Environment (FOEN), a more comprehensive platform

(http://climate-extremes.ch) has been launched in 2016 with analyses at more than 300 (nearly

60) stations for daily (subdaily) precipitation, in which state-of-the-art statistical methods were applied.

The extreme value analyses made available on the web platform include a 2-page sheet in pdf-format.

They are intended for engineers and other experts requiring quantitative information for design and risk

management. The present report explains how to read and interpret these analyses, and documents

the underlying data and methods. The methods employed here are long established, and climatological

aspects are not addressed. Thus, the report must be seen as a ”user manual” for a person familiar with

basic statistical concepts, wishing to understand the contents of the analyses, and how they came into

being. The exact mathematical expressions have been added for completeness in separate boxes, but

can be ignored, as they are not essential for understanding the text.

The report is divided as follows. The first part provides a detailed description (chapter 2) of the contents

of the analysis sheet. The second is dedicated to the data used (chapter 3), their measurement, even-

tual manipulation, and quality issues. The third part (chapter 4) describes the theoretical background:

the relevant aspects of extreme value statistics, the assumptions that need to be made, and when these

may be considered appropriate in this particular context. Finally, the fourth part (chapter 5) compares

analyses by Zeller et al. (1976-1992), widely used until now, with the results on the MeteoSwiss web

platform.

”Graphical” table of contents (pages 9 - 10):

Example of a 2-page extreme value analysis sheet (as appears on the web page).

Technical Report MeteoSwiss No. 255, 3rd Edition
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Zürich / Fluntern: 556m, 47.38N, 8.57E

Extreme Value Analysis
1-day precipitation, 5:40-5:40 UTC
1966 - 2015 (number of missing years: 0)

Bayes (seasonal maxima, GEV). Reliability of results: good.

Plot of annual return levels and their
uncertainty (ordinate) for a given
return period (abscissa).

The estimated return levels are colored
blue. The return level 95% confidence
intervals are given in green.
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Table of the largest annual extrema in
the period analysed.

If two large events occur in the same
year, only the largest will appear in this
table.

date precipitation
[mm/day]

estimated return
period [years]

1968-09-21 103.1 29
2007-08-08 97.8 23
1978-08-07 97.2 22
1973-06-23 97.1 22
1999-05-12 94.2 19

Table of annual return levels for a
selection of return periods.

The 95% confidence intervals are
shown in brackets.

return return confidence
period value interval
[years] [mm/day] [mm/day]
2.33 53.6 ( 49.5 - 58.6 )
5.00 67.7 ( 61.4 - 76.7 )

10.00 80.8 ( 71.1 - 95.6 )
20.00 95.1 ( 81.5 - 120.3 )
30.00 104.2 ( 87.6 - 136.10)
50.00 116.8 ( 95.7 - 161.9 )

100.00 136.9 (106.0 - 206.4 )

c©MeteoSwiss
Operation Center 1, P.O. Box 257, CH-8058 Zurich Airport
rre150mx; xs 6.5.3; September 13, 2018

Contact: customerservice@meteoswiss.ch

Short summary

Interpretation ..... p. 15

Return level plot

Interpretation ..... p. 11

Definition ........... p. 49
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Bayesian Analysis

• Assumption: seasonal maxima follow a Generalized Extreme Value (GEV) distribution.

• Annual return periods, return levels and their confidence intervals are derived numerically from
the seasonal posterior predictive distributions.

Parameter Prior Distributions

• Location and scale: uninformative normal distribution.

• Shape: Beta(2,2) on the interval [-0.5,0.5].

Data and data quality

• The raw data is quality-checked, but not homogenized.

• Missing data: none.

Additional information

Time series of extrema
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Left: Time series of extrema.

Center left: Histogram of extrema. Red line: derived density distribution.

Center right: QQ plot. Plot of empirical vs. theoretical quantiles of the observations. The theoreti-
cal quantiles are derived numerically from the seasonal posterior distributions. Should the dots align on
the diagonal (red line), the fit would be perfect.

Right: Return level plot of the annual return levels and their uncertainties derived from the seasonal
posterior distributions (blue and green lines, respectively). The black points provide information on the
largest observation of each year in the analyzed period. The position of the point on the y-axis cor-
responds to the measured precipitation sum. The position on the x-axis derives from the number of
years within the analyzed period. The return period of the observation can be inferred by extending a
horizontal line from the black point to the blue line. The position of the intersection point on the x-axis
corresponds to the return period.

c©MeteoSwiss
Operation Center 1, P.O. Box 257, CH-8058 Zurich Airport
rre150mx; xs 6.5.3; September 13, 2018

Contact: customerservice@meteoswiss.ch

Method information

Documentation ... p. 31

Estimation information

Interpretation ..... p. 39

Data information

Interpretation ...... p. 16

Documentation ... p. 21

Reliability

Interpretation ...... p. 13;

Documentation ... p. 44

Plotting points ...... p. 12
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2 Interpretation

The station-based extreme value analysis is presented on two pages. The first page (shown on page 9

for Zurich) states briefly the data employed and the fit quality, and displays the return level plot, a table

of return levels for a selection of return periods, and a table of return values for the five yearly maxima

in the data series. The second page (shown on page 10) contains more detailed information on the

data, the distribution and the estimation.

The extreme value analysis presented on the web platform of MeteoSwiss is based on the premise

that the generalized extreme value (GEV) distribution (see section 4) describes the behavior of yearly

(or seasonal) maxima of daily precipitation. The estimation procedure is more sophisticated, how-

ever, than a conventional, direct estimation of the GEV from yearly maxima. In a first step, Bayesian

inference is applied to seasonal maxima, then yearly information is reconstructed from the seasonal

analyses. Thus, the interpretation of the analyses on pages 9 and 10 presented below departs from

the interpretation of a straightforward analysis of yearly maxima.

2.1 Return level plots

Return level plots (figure 1) display the probability that a given value is exceeded. The probability is

expressed in terms of years. Thus a value that has a probability of 1% of being exceeded in any given

year is - in the (very) long term average - expected to be exceeded once in a 100 years. Then, the

value, or “return level”, is said to have a “return period” of 100 years. In fact, return levels are extreme

quantiles: the 100-year return value has a probability of 0.99 of not being exceeded, and therefore

corresponds to the customary 0.99-quantile (see figure 2).

To focus the attention on the behavior of the rarest events, return periods are transformed in such a

way that the relation to the return levels will appear as a straight line for a Gumbel distribution (see

section 4) of the yearly maxima.

Figure 3 illustrates the meaning of the return levels from an empirical point of view with 100 yearly max-

ima. Sorting the yearly maxima by their magnitude yields an empirical quantile function. Transforming

them produces an empirical return level plot. The transformation squeezes together the central part of

the distribution and stretches the extremities.

In real life applications, the true probability distribution describing the behavior of extremes is unknown,

and must be estimated from the observations. Due to the finite size of the sample, this estimation is in-

herently uncertain, but the uncertainty can be quantified, and translates to uncertainty of the estimated

return levels (green lines, figure 1).

Technical Report MeteoSwiss No. 255, 3rd Edition
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Figure 1: Return level plot
of 1-day precipitation at sta-
tion Lugano for the period
1961-2013. The blue line
represents the return level
estimates based on the esti-
mated GEV-distribution; the
green lines represent their
95% confidence interval; and
the y-coordinate of the black
points represent data used
for estimation of the GEV-
distribution; the plotting po-
sition (x-coordinate) of the
points is solely determined by
the length of the underlying
record (and is not robust).
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Figure 2: Correspondence between cumulative probability distribution function (CDF, left), quantile function (cen-
ter) and return level plot (right). The distribution shown here was estimated for Lugano 1-day precipitation ex-
tremes for the period 1961-2013 (cf. figure 1).

Remark. It is important to keep in mind that the plotted uncertainties only describe the uncer-

tainty in return level estimates. No statement can be made regarding an uncertainty in return

period based on the uncertainties represented in figure 1.

Plotting points The return level plot sometimes displays so-called “plotting points” (black points,

figure 1). The position of these plotting points on the y-axis corresponds to the values of the observed

sample maxima. Since the true return period of these events is unknown, however, the position on

the x-axis is determined empirically from the sample size using the Weibull estimator (see definition 6,

section 4.3.1). Thus, for a sample size of 50 years, for instance, the largest observation will be assigned

a return period of approximately 50 years, the second largest a return period of approximately 25 years,

and so on. In other words, it does not represent the local behavior of the quantity of interest (e.g. daily

Technical Report MeteoSwiss No. 255, 3rd Edition
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Figure 3: Yearly maxima of daily precipitation at station Lugano, 1918-2017 (100 years). Left: yearly maxima or-
dered chronologically (left) with rainbow colors from red to magenta as they increase. Center: sorted in ascend-
ing order; can be understood as an empirical version of the quantile function in fig. 2, center. Right: sorted in
ascending order, and transformed as in a return level plot. There are 2 (25;50) measurements of daily precipita-
tion above 170.3 mm/day (105.5 mm/day; 91.5 mm/day). Since we have 100 values in total, this means 2 (25;50)
in 100 or 1 in 50 (4; 2) values. Thus 170.3, 105.5, and 91.5 mm/day can be taken as 50, 4, and 2 year “empirical”
return levels, respectively. Of course, this is only one sample: we would need a large number of samples to verify
that these values truly correspond to the return levels. Note also that, on this empirical view, the return level is
not unique, as, for instance, any value between the third and the second largest would have had the same num-
ber of values above it.

precipitation) at the particular station under consideration, since the return period would be the same

regardless of the geographical location of the station. Some conclusions can, however, be drawn

from the comparison between plotting points and best estimate (blue line, figure 1): any substantial

or systematic disagreement between empirical and GEV estimates, after allowance for sampling error,

suggests an inadequacy of the GEV model.

For a more thorough analysis of the fit, it is preferable to examine the agreement between empirical

and modeled estimates in a quantile-quantile plot, which is easier to interpret correctly (see sec. 4.3.1).

On the product presented on the web platform (http://climate-extremes.ch), exemplified on pages

9 and 10, the return level plot is not a transformed cumulative distribution function as in fig. 2. The

return levels depicted in blue are derived from the return levels of seasonal analyses (see sections 4.5

and 4.2.3), the description of which was not included. Nonetheless, the plot is read in exactly the same

way as described in this section.

2.2 Reliability

Each extreme value analysis is tested for its reliability, and the verdict is stated on the analysis sheet.

This verdict does not pertain to the inherent uncertainty of the estimation due to the limited sample

size. Rather, it describes the possibility that the assumptions motivating the choice of the statistical

model may not be fulfilled. If the reliability is poor, for instance, the model does not represent well

the observed extreme values. Three degrees of reliability have been defined: poor, questionable, and

good. Their meaning and what to do about them is shown in the following table.

Remark. “The only justification for extrapolating an extreme value model is the asymptotic basis

on which it is derived.” (Coles, 2001, page 3)

“However, if a model is found to perform badly in terms of its representation for extreme values

that have already been observed, there is little hope of it working well in extrapolation.” (Coles,

2001, page 3)

Technical Report MeteoSwiss No. 255, 3rd Edition
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Verdict Interpretation for the user Action

poor Observed extreme values are Do not use this statistical model!

badly Use largest observed events or

represented by the model. closest reliable station instead.

questionable Observed values are Careful assessment necessary.

not well Use visual guides (sec. 4.3.1) to decide:

represented by the model. if points line up - proceed as usual;

Underlying assumptions might be violated. if not - contact klimainformation@meteoswiss.ch.

good Observed extreme values are

well The statistical model can be used.

represented.

The QQ plot presented on page 10 may not suffice to judge the quality of the fit, as the estimates are

reconstructed from seasonal estimates (see sections 4.5 and 4.2.3), hence the recommendation to

seek advice from klimainformation@meteoswiss.ch in cases of questionable estimation quality.

2.3 Example stations

In the following, we illustrate the interpretation of a typical extreme value analysis product for two sta-

tions, Genève-Cointrin (abbreviation GVE) and Zürich / Fluntern (abbreviation SMA), that are subject

to different climatic conditions in terms of heavy precipitation, and therefore lend themselves well to

highlight concepts and problems in interpreting extreme value analysis. The period of analysis for

these examples is 1961-2013.

Geneva is located at the south-western tip of Switzerland, in a flat plain, between the Jura mountains

and the foothills of the Alpine arch, while Zurich lies in the north-eastern part of the Swiss Plateau.

Heavy precipitation is generally due to summer thunderstorms on the background of a weather con-

figuration characterized by moist, south-westerly flow. Geneva is comparatively dry because of its

protected position in the lee of the Jura mountains. The seasonal cycle of daily precipitation is very

modest in Geneva, with the largest monthly maxima in September; in Zurich on the other hand, it is

very pronounced and peaks in August.

The differences in precipitation regime between Genève-Cointrin and Zürich/Fluntern are manifest in

the statistical characterization of their extremal behavior. Average heavy precipitation is of similar

magnitude at both stations: we can expect events of 50mm per day to be exceeded on average every

other year, with similar ranges of deviation from this average. Yet, they differ in the behavior of the very

rare events, and thus illustrate two regimes of extremal behavior.
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2.3.1 Genève-Cointrin

Here, we refrain from displaying the extreme value analysis product for Genève-Cointrin, as its form is

the same as for Zürich/Fluntern on pages 9 and 10. All plots, tables, and explanatory text relevant to

the discussion will be shown as separate figures.

Figure 4: Short summary of extreme value analysis.

Short summary To define the product at hand,

the first few lines provide succinct information re-

garding the data and statistical method (figure 4):

• The station name, here Genève-Cointrin, its

altitude (411m) and geographical coordinates

(46.25N, 6.13E).

• The MeteoSwiss product name, here Extreme Value Analysis.

• The variable analyzed, here 1-day-precipitation, recorded daily at 5:40 UTC, observed from

1961 to 2013 with no missing years (see section 3).

• The extreme value approach employed: Bayesian inference based on block maxima data, where

seasonal maxima are assumed to follow a generalized extreme value distribution (see section

4).

• A summary of the reliability of the results based on the quality of the fit, here good (see section

4.3.2 and page 49).

Return level plot The return level plot summarizes the extremal behavior at a glance (figure 5).

A range of 1-day-precipitation amounts (y-axis) is plotted against their exceedance probabilities ex-

pressed in terms of average number of years (x-axis).

The return level estimate (blue line) is curved upwards. This means that regardless which amount of

precipitation we are looking at, the probability that a larger one occurs is non-zero; the probability of

larger and larger amounts becomes smaller and smaller, and the rate at which this probability decays

at GVE is relatively fast. The fastest possible decay that never reaches a probability of zero would be

exponential, and would look like a straight line on the return level plot. Indeed, the return level plot has

purposely been transformed in such a way that an exponential decay looks like a straight line.

The green lines on the return level plot (figure 5) show the 95% confidence intervals. Note that these

confidence intervals only describe the uncertainty of the return levels, expressed in mm.

The strong positive curvature of the upper confidence bound (green line, figure 5) indicates that this

extremal behavior is subject to uncertainty: a much slower decay of the exceedance probability is

also quite possible. This would imply that very severe events would have a higher probability of being

exceeded than is described by the blue line. The curvature of the lower confidence bound is difficult

to see. It could be a straight line, or be very slightly negatively curved, which would correspond to

a bounded distribution. A bounded distribution is therefore possible but very unlikely. A negative

curvature would suggest that there exists a daily precipitation amount above which any amount has a

zero probability of being exceeded.
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Figure 5: Return level plot of 1-day precipitation
in Geneva for the period 1961-2013. The blue line
represents the return level estimates; the green lines
represent their 95% confidence intervals.
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The blue line appearing on the return level plot is not a GEV. It was calculated based on the return

levels of the seasonal maxima (see section 4.5). For this reason, there are no GEV parameters with

which to describe extreme behavior succinctly.

Tables The table of the largest annual extrema and the table of return levels contain the same infor-

mation as the return level plot. The first (table 1, left) “reads” the return periods corresponding to the

5 largest maxima, the second (table 1, right) “reads” the precipitation amounts corresponding to given

return periods.

date precipitation
[mm/day]

estimated return
period [years]

2002-11-14 92.6 36
1993-09-09 85.2 24
1978-08-07 76.1 14
1975-09-14 75.7 14
1999-09-25 72.9 11

return return confidence
period value interval
[years] [mm/day] [mm/day]

2 46.6 ( 43.3 - 50.5 )
5 60.6 ( 55.4 - 68.7 )

10 71.1 ( 63.6 - 84.1 )
20 82.2 ( 70.9 - 105.1 )
30 89.2 ( 74.8 - 118.5 )
50 98.8 ( 79.9 - 139.3 )

100 112.4 ( 86.9 - 174.2 )

Table 1: Extreme value analysis at Genève-Cointrin (GVE) over the period 1961-2013: largest 1-day precipita-
tion events with estimated return period (left) and return level estimates for a selection of return periods (right).

Data information The time series of annual maxima (figure 6, left) informs visually about missing

data or possible trends or cycles. Here, there could be a decadal oscillation or a trend towards higher

values at the end of the record, although it may be entirely by chance that the two largest events occur

in the second half of the period of analysis. Further inquiries are therefore necessary to rule out random

effects. The histogram (figure 6, right) shows the frequency with which the annual maxima have been

recorded, and can be understood as the empirical probability density function (PDF). The red line is

calculated from the seasonal analyses: it is not a GEV.
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Figure 6: Time series (left) and histogram (empirical density) (right) of annual maxima with estimated density
function (red line) taken from the extreme value analysis of 1-day precipitation at station Genève-Cointrin for the
period 1961-2013.

Reliability Genève-Cointrin is an excellent example for the problems experienced when applying

extreme value statistics: although the fit is declared as “good”, the QQ-plot of the yearly maxima (fig.

7) displays an odd pattern for values that are not really extreme, i.e. up to about 60 mm/day (and

return periods below 10 years). In addition, the very few high values seem systematically a little off,

and suggest that we overestimate the high return levels, especially if we extrapolate beyond the range

of observed values.

As it turns out, on the QQ-plots for each (separate) seasonal analysis (not shown) the dots closely

follow the red line, indicating quite reliable fits. The pattern we observe on the yearly QQ-plot may

therefore be the result of an unfortunate grouping of seasonal maxima in certain years. Thus, despite

the somewhat questionable aspect of the yearly QQ-plot, the analysis is reliable and can be used for

extrapolation at unobserved levels.

Remark. What have we learned:

At Genève-Cointrin, the probability of very extreme precipitation decays polynomially with the

severity of events. Statistically speaking, the data is consistent both with a much slower decay

and with an exponential decay (faster) of the tail of the distribution. On the other hand, a bounded

distribution is very unlikely. Thus, any precipitation amount, however high, has a non-negligible

probability of being exceeded (there exists no upper bound).

The largest 1-day precipitation event (92.6mm) recorded between 1961 and 2013 was November

14th, 2002, which corresponds roughly to a 90-year event.

The reliability of the fit is good. Eventually, further investigation of the seasonal analyses un-

derlying the present results could clear any suspicions regarding long-term trends. All in all,

extrapolation to unobserved levels up to a reasonable return period compared to the length of

the data set (perhaps 200 years) is justifiable.
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Figure 7: Quantile-quantile plot of 1-day precip-
itation at station Genève-Cointrin for the period
1961-2013.
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2.3.2 Zürich / Fluntern

The extreme value analysis for 1-day precipitation observed at Zürich / Fluntern during the period 1961-

2013 is shown on pages 9 and 10. Here, we will highlight differences to the statistical and extremal

behavior of the extreme value analysis for Genève-Cointrin.

Reliability As at Genève-Cointrin, the statistical model in Zürich / Fluntern is judged as “good”. This

means that any mismatch between model and observations can be attributed to chance. Yet, the yearly

QQ plot (fig. 9) would suggest a different regime for the lower values. Up to nearly 70 mm/day (i.e.

return periods below 5 to 10 years), the empirical quantiles increase at a systematically slower rate than

the theoretical ones, indicating a steeper empirical cumulative distribution function in that area. The

four largest values on the yearly QQ plot hint at a systematic difference, but a glance at the histogram

casts doubt on this conclusion, as these 3 values could simply be nearly equal by accident. Also, we

should keep in mind that measurement errors can never be completely ruled out.

The seasonal QQ plots (not shown) show no irregularities for lower values, but display the same odd

pattern for the highest values. On the other hand, none of the seasonal time series (not shown) indicate

anything worthy of notice. Thus, a closer look at the seasonal analyses clears doubts regarding the

quality of the estimates at low and medium levels, but the evidence remains inconclusive for the range

of the highest values. A larger sample would certainly be helpful.
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Figure 8: Return level plot of 1-day pre-
cipitation in Zürich for the period 1961-
2013. The blue line represents the return
level estimates, and the green lines the
95% confidence intervals.

Remark. At Zürich / Fluntern, the probability of very extreme precipitation decays polynomially

with the severity of events, and much more slowly than at station Genève-Cointrin. This means

that any precipitation amount has a larger probability of being exceeded than at Genève-Cointrin.

The largest event in Geneva, which had an estimated return period of approximately 90 years,

would have a return period below 20 years at station Zürich / Fluntern. Here too, the uncer-

tainties are large, but it is very unlikely that the distribution should be bounded or even have an

exponentially decaying tail.

The largest 1-day precipitation event between 1961 and 2013 was recorded on September 21st,

1968 and amounted to 103.1mm. Three events of similar magnitude (97.8mm, 97.2mm, 97.1mm)

were recorded 08/2007, 08/1978 and 06/1973.

The reliability of the fit is good, but the visual guides for reliability revealed some cause for con-

cern that could not be completely dispelled by a close examination of the seasonal analyses.

Thus, caution should be exercised when extrapolating return values to unobserved levels. In

particular, consideration of the confidence intervals is recommended.
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Figure 9: Quantile-quantile plot (left) and histogram (right) of 1-day precipitation at station Zürich / Fluntern for
the period 1961-2013. The red line on the histogram represents the probability density function (PDF) calculated
from the seasonal analyses. It is not a GEV.
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3 Data

3.1 Stations and Analysis Period

The data used for the extreme value analyses on the web platform http://climate-extremes.ch

come from in situ measurements at stations of the MeteoSwiss observational network. In chapter

5, the extreme value analyses presented on http://climate-extremes.ch are compared with the

analyses by Zeller et al. (1976-1992). The stations selected for this comparison are part of the Swiss

National Basic Climatological Network (NBCN), which groups the most important climatological sta-

tions within the observational network of MeteoSwiss (Begert et al., 2007). Most of these stations have

very long records: data at some of them date back to the 19th century. The NBCN stations are spread

out over Switzerland, and should be to some extent representative of the regional climatic variations in

monthly precipitation. The subset selected for the comparison in chapter 5 is shown in fig. 10.

The MeteoSwiss observational network encompasses different types of stations. NIME stations ob-

serve precipitation only, and measurements are carried out manually, at 7:30 local time every day. Cli-

mate Stations and SwissMetNet stations measure a wide range of meteorological parameters. Today,

there are no more manual Climate Stations in operation: they were gradually changed to SwissMet-

Net stations, the last one in 2013. At SwissMetNet stations, precipitation is measured automatically

in 10-minute intervals, starting on the hour. At Climate Stations, manual precipitation measurements

took place daily at 6:00 and 18:00 UTC. Note that for manual measurements, there is a time window

of approximately 70 minutes for the observer to carry out the reading. The NBCN stations used for the

comparison in chapter 5 were all Climate Stations until conversion to SwissMetNet stations.

Only SwissMetNet stations can provide precipitation data at durations shorter than one day. We will call

these durations “sub-daily” and, by extension, refer to such stations as sub-daily stations. All stations

that yield daily precipitation data will be referred to as “supra-daily” stations, as precipitation data for

durations of one to several days can be derived. The vast majority of stations of the MeteoSwiss

observational network can be classified as supra-daily. The earliest sub-daily measurements took

place in 1981, while some supra-daily stations were already in use in 1864.

In addition to customary quality standards, extreme value analysis requires data to cover a large num-

ber of years for its estimates to offer any credibility, which limits the number of adequate stations.

Since the sub-daily and supra-daily measurements cover different periods, the selection criteria differ

accordingly. The station selection criteria are listed in section 3.3. They resulted in a set of over 300

supra-daily stations (fig. 11) and nearly 60 sub-daily stations (fig. 12).

Clearly, the coverage for supra-daily data is quite comprehensive. Nevertheless, it is uneven both

in horizontal (see for example the empty area in the Ticino) and vertical extent. Only 10% of the

Technical Report MeteoSwiss No. 255, 3rd Edition

http://climate-extremes.ch
http://climate-extremes.ch


22

500

1000

1500

2000

2500

3000

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−50000 0 50000 100000

0
10

00
20

00
30

00

distance [m]

al
tit

ud
e 

[m
]

●

●

●
●

●●
●

●

● ●

●

●

●

●
●

●
●

●
●

●●

●

●
●

● ●
●

Figure 10: Map (left) and vertical cross-section (right) of NBCN station locations. The list of station names, ge-
ographical location, and altitude can be found on page 69. The vertical cross-section across the Alpine ridge is
calculated as the distance to the inner-Alpine valleys (black line on the map), defined as the Rhone and the
beginning of the Rhine valleys, connected to each other and prolonged on either side by straight lines. To the
east of the Rhine valley, the straight line is made to pass through the station Scuol. The northern (southern)
Alps are defined here as to the north (south) of the inner-Alpine valleys. The cross-section of the Alpine topog-
raphy is computed with the USGS GTOPO30 (http://eros.usgs.gov) digital elevation model, and is the minimum
air-line distance of each grid-point center to the inner-Alpine valleys. The thick (thin) grey line(s) represent(s) the
smoothed median (10% and 90% quantiles) of the altitude of all Swiss grid-points in a 100m bin of distances.
Note that all bins do not contain the same number of grid-points. In fact, at the furthest distance to the south,
there are so few grid-points per bin that the altitude quantiles all give the same value.
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Figure 11: supra-daily stations used on the web platform (July 2017). Blue (green): stations below (above)
1500m. The size (color) of the dots decreases (intensifies) with altitude.
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Figure 12: sub-daily stations used on the web platform (July 2017). Blue (green): stations below (above) 1500m.
The size (color) of the dots decreases (intensifies) with altitude.
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stations are above 1500 m (compared to 28% of the surface of Switzerland), and 60% of these are in

the southern Alps (see fig. 10 for the precise definition of inner-Alpine valleys and southern/northern

Alps). The great majority of stations (nearly 80%) are on the northern side of the inner-Alpine valleys

(compared to 70% of the surface of Switzerland), and at least 60% are located in the Plateau, Jura,

and northern Alpine rim, at more than 30 km to the north of the inner-Alpine valleys (compared to 52%

of the surface Switzerland).

In the inner Alps, within a 30km ribbon on either side of the inner-Alpine valleys (36% of Swiss land),

only one station (Weissfluhjoch) is above the 90th percentile of the altitudes of all grid-points within

a distance bin, almost all (92%) are below the median, and a considerable amount (nearly 60%) are

below the 10th percentile. While it would be very useful to have better coverage in elevated areas,

we should keep in mind that measuring precipitation in mountainous terrain remains a challenge, both

because of the necessity for regular human intervention, and because of difficulties in maintaining

adequate measuring conditions (for instance, strong winds may prevent rain drops from entering the

receptacle).

The extreme value analyses on the web platform http://climate-extremes.ch are based on two

time periods, each tailored to different user’s needs: the Standard Period, covering 50 years, and the

Longest Period, extending over the longest possible period, but with at least 40 available years of data

within the most recent period of 50 (completed) years.

Standard Period: For users who need to qualify a precipitation event in terms of its “extremeness” or

compare the results at different stations (e.g. annual reports on the return period of events in the vicinity

of a barrage, reports on precipitation events with impacts at regional or national level, expert opinions,

claims), the web platform provides return values and return periods estimated for the standard period.

A common time period is necessary for comparing return periods of events regardless whether they

took place during the standard period. It is also necessary for comparing return values at different

stations. The standard period has a length of 50 years, and is shifted forward in time by 5 years every

5 years.

Longest Period: For users who need a return value at a specific location or from a specific data

series, the web platform provides return values estimated for the longest possible period with available

data. While these estimates are based on more information, they may suffer from a long-term trend,

as non-stationarities have been ignored.

Estimating return levels with respect to different time periods inevitably leads to different results. In

addition, both the return values and the goodness-of-fit vary from standard period to standard pe-

riod in case (a), and from year to year in case (b) due to the annual update. At the Lugano station

(LUG), for example, the 100-year return value for 1-day precipitation events is 16 mm/day lower if the

standard period (1966-2015) is used instead of the longest possible period (1864-2015), and at the

Schaffhausen station (SHA) it is 22.5 mm/day higher. These differences are not statistically significant,

however. To ensure consistency, MeteoSwiss will use the results estimated for the standard period for

the qualification of precipitation events.

Different analysis periods are only available for supra-daily precipitation events. For sub-daily precipi-

tation, the time period used is prolonged by one year every year until it reaches a coverage of 40 years

and can be considered as a standard period. Until then, “Standard Period” and “Longest Period” will
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display the same results for sub-daily precipitation events.

3.2 Data quality

The measuring instruments of the MeteoSwiss observational network have changed over time (table

2). The first ombrometers measured precipitation by means of an open cylindrical receptacle with a

horizontal cross-section of 400cm2. In the early 20th century, these were replaced with Hellmann rain

gauges with a horizontal cross-section of 200cm2. Both of these systems require manual reading. At

the beginning of the 1980s, about two thirds of the MeteoSwiss stations were equipped with automatic

(heated) tipping bucket rain gauges. Since 2012, a further automatic ombrometer has been introduced

that uses a weighing mechanism that is also used to partly automate NIME stations (see section 3.1).

measuring instrument time period reading time

ombrometer 400 cm2 19th / early 20th century 6.00 UTC or 7.30 local time (m)

Hellmann rain gauge 200 cm2 early 20th century till today 6.00 UTC or 7.30 local time (m)

tipping bucket rain gauges since 1980s every 10min., starting on the hour (a)

weighing precipitation gauge starting 2012 every 10min., starting on the hour (a)

Table 2: Precipitation measuring instruments of the MeteoSwiss observational network with manual (m) and
automatic (a) reading.

All of these ombrometers have their weaknesses, and precipitation measurements suffer from both sys-

tematic and non-systematic errors. The Hellmann rain gauges require manual reading at regular times,

and sometimes the measurements are carried out at incorrect reading times. If the reading time has

been skipped, an accumulated value is provided for the following day, and the amount of precipitation

belonging to the proper time interval is unknown. The tipping bucket systems systematically underesti-

mate (overestimate) precipitation at high (low) intensities, while the weighing rain gauges occasionally

yield ghost precipitation due to pressure fluctuations caused by gradients in temperature. The latter

errors are, at the time of this writing, being adressed by correcting the data during the quality assess-

ment procedure. The consequences of these measurement errors for the analysis of extremes is not

always straightforward, and we should keep in mind that they inevitably contribute to the uncertainty of

the results.

3.3 Heavy precipitation data

The supra-daily data analyzed on the web platform http://climate-extremes.ch consists of 1 day

precipitation and of 2, 3, 4, and 5 day sliding sums of daily precipitation. The sub-daily data analyzed

consists of 10 minute precipitation and of 20 and 30 minute sliding sums of 10-minute precipitation; as

well as of 1 hour precipitation and 2, 3, 4, 6, 8, 12, and 16 hour sliding sums of hourly precipitation.

When building sliding sums of 2 to 5 day precipitation, all missing days but 1 are ignored. For instance,

one missing daily observation is treated as zero precipitation and the two 2 day sums it should con-

tribute to correspond to precipitation on the previous and on the following day. Thus, it will not lead
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to two missing entries for 2 day precipitation. At sub-daily stations, daily precipitation is the sum of

all available 10 minute measurements, provided there are no more than 24 missing values, of which

no more than 12 are consecutive. Sub-daily sliding sums handle missing values differently before and

after 2004, when daily verification of 10 minute data quality was introduced. From 1981 to January

2003, up to 1 missing 10 minute value is ignored for all sliding sums. Since February 2004, up to 1, 2,

2, 3, 4, 5, and 8 missing 10 minute values are ignored in 2, 3, 4, 6, 8, 12, and 16 hour sums.

For extreme value analysis with the block maxima approach (see section 4 for details), only the max-

imum value per year is considered, and thus the sample size corresponds to the number of years of

observation available. At MeteoSwiss, all yearly maxima are computed from daily precipitation values,

be it the precipitation sum for supra-daily durations, or the daily maximum of a sub-daily precipitation

sum. The computation of a yearly maximum ignores up to 22 missing values, provided no more than

11 of them are consecutive.

In turn, the daily maximum of the sub-daily precipitation durations accepts no more than 1 missing

entry (if, for instance, two 1-hour or two 6-hour sums - consecutive or not - in a day are missing,

the daily maximum will be missing). Up to January 2004, this pertained to 10 minute values as well,

because the daily maximum 10 minute precipitation was computed from the hourly maximum 10 minute

precipitation. Since February 2004, the daily maximum 10 minute value is computed directly from the

quality-checked 10 minute data, and ignores up to 9 missing 10 minute sums per day, provided no

more than 5 are consecutive.

Since long records are essential for the credibility of extreme value analyses, a minimum number of

available yearly maxima must be imposed. For supra-daily data, 40 years of data must be available in

the most recent 50 years of the analysed period (Standard or Longest Period). For sub-daily data, a

minimum of 25 years is required.

The selection criteria for the stations are summarized below for version 2016 of the web platform.

Remark. Data requirements on version 2016 of http://climate-extremes.ch.

• Standard Period / Longest Period: at least 40 (25) years of observations in the period

1966− 2015 (1981− 2015) for supra-daily (sub-daily) data.

• quality checked

• still operated today

• non-homogenized data

• well-documented station history
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Station 1-day record 2-day record 3-day record

abbreviation (date) (amount) (date) (amount) (date) (amount)

in [mm] in [mm] in [mm]

ALT 31.07.1874 147.2 31.07.1874 194.7 04.05.2002 204.3

ANT 04.07.1916 185.3 03.05.2002 224.4 16.11.2002 269.5

BAS 25.05.1872 94.8 26.05.1872 139.4 26.05.1872 150.8

BER 14.08.2010 90.3 03.10.1888 139.4 03.10.1888 141.4

CDF 25.08.2002 100.8 19.01.1910 170.4 20.01.1910 206.7

CHD 28.12.1947 96.9 19.01.1910 167.3 20.01.1910 207.6

CHM 25.09.1987 102.9 26.09.1987 175.8 27.09.1987 175.8

DAV 18.11.1874 95.0 19.11.1874 143.0 20.11.1874 198.0

ELM 29.08.1890 147.3 04.07.1891 187.4 15.02.1990 205.6

ENG 31.07.1874 153.8 31.07.1874 226.5 01.08.1874 226.5

GRC 02.11.1968 170.3 15.10.2000 198.4 15.10.2000 226.8

GRH 21.12.1991 151.4 22.12.1991 236.2 22.12.1991 292.8

GSB 12.11.1996 159.6 12.11.1996 273.2 13.11.1996 321.5

GVE 14.11.2002 92.6 09.09.1993 111.3 09.09.1993 129.2

LUG 21.08.1911 262.8 21.08.1911 342.5 22.08.1911 368.4

LUZ 06.06.2002 111.8 06.06.2002 123.3 27.07.1976 133.2

MER 22.08.2005 110.9 22.08.2005 205.0 22.08.2005 218.0

NEU 08.10.1949 116.1 26.09.1987 125.7 20.01.1910 126.1

OTL 26.09.1991 317.9 22.09.1981 377.8 23.09.1981 416.4

PAY 26.09.1987 78.4 26.09.1987 106.8 27.09.1987 106.8

RAG 29.08.1890 175.0 29.08.1890 217.0 31.08.1890 241.0

SAE 22.08.2005 186.7 03.11.1921 290.0 04.11.1921 321.4

SBE 07.08.1978 175.5 15.11.2002 258.5 16.11.2002 367.7

SIA 03.11.2000 108.0 15.11.2002 159.3 16.11.2002 223.0

SIO 14.02.1990 79.3 14.02.1990 138.5 15.02.1990 170.2

SMA 11.06.1876 171.5 12.06.1876 244.5 12.06.1876 272.5

STG 01.09.1881 250.0 02.09.1881 309.1 03.09.1881 338.9

Table 3: NBCN stations with more than 40 available years of daily precipitation data (up to 2010) with the
records (in mm) of 1-day, 2-day, and 3-day precipitation.
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4 Theoretical background: Extreme Value Statis-

tics

Univariate extreme value statistics offers three different approaches to describe extreme events. The

approaches differ in the way they characterize extreme events: via the largest/smallest values; via the

excess of a pre-defined threshold value; or, more generally, via the count of events falling into a pre-

defined set of values. They are called block maxima (BM), peaks over threshold (POT) or point process

(PP) approach, respectively. In the following we will describe the BM approach closely following Coles

(2001).

Here, we first present some general properties of the generalized extreme value distribution (GEV), the

“extremal” distribution that - so extreme value theory tells us - represents the behavior of the maxima.

Then, we explain different methods to infer this distribution from the data at hand, and assess the

goodness of the estimated fit. Finally, we close the section with the notion of return levels, a means to

illustrate the behavior of extreme values.

4.1 The GEV distribution

Using the maxima of a block of observations to characterize the behavior of rare events finds its jus-

tification in extreme value theory. Fisher and Tippett (1928) and Gnedenko (1943) prove that the

distribution of the largest values of any1 random variable converges towards one of three types of limit

distributions, and that these three types are the only possible limit distributions. This law is known as

the extremal types theorem or Fisher-Tippett-Gnedenko theorem. Strictly speaking, the maxima must

first be appropriately re-scaled for the limit distribution to be non-degenerate (see Coles, 2001, p.46 for

details).

1see remark 4.1 and Leadbetter et al. (1983)
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Remark. The extremal types theorem - as does the central limit theorem for sample means - jus-

tifies the practice of approximating the distribution of sample maxima via extreme data only; thus,

it is not necessary to estimate the population’s distribution F in order to describe the behavior of

the population’s rare events.

Notation. Given a sequence of independent random variables X1, . . . , Xn with a common dis-

tribution function F , we denote with Mn = max{X1, . . . , Xn} the maximum of the sequence.

For example, M365 would be the annual maximum of daily observations for a block of one year.

In this chapter, we use the following conventions:

• random variables are symbolized by capital letters, for instance Z, or Θ.

• observations, i.e. realizations of these random variables are symbolized by small letters,

such as z, or θ. For instance, z = (z1, . . . , zm) could be the m yearly maxima of daily

precipitation.

• The probability that z occurs is expressed, for continuous probability distributions, as

Pr{Z 6 z}, the “probability that Z does not exceed z”. The function describing this

quantity for all z is the Cumulative Distribution Function (CDF), and is symbolized by a

capital letter, such as F (z), or G(z) for the GEV distribution.

• The probability density function (PDF) is the first derivative of the CDF and can be under-

stood as a weighting function, large for values that occur frequantly, small for values that

are rare. It is designated by small letters, such as f(z), or g(z) for the PDF of the GEV

distribution. When “some” probability density function (not necessarily GEV) is meant, we

will use p(z).

Details. Let Mn be a sequence of maxima, an and bn appropriate re-scaling sequences of

constants and G the limit distribution of (Mn − an)/bn, then the probability that Mn does not

exceed a given value z is given by

Pr{Mn 6 z} ≈ G∗(z)

with G∗ another member of the GEV family.

In practice, we do not need to estimate the re-scaling sequences, an and bn, but only the distri-

bution G∗.

Remark. Note that the observations from which we take the maximum (e.g. daily precipitation)

should not display seasonal behaviour within a block. If they are not independent (e.g. precipita-

tion on a given day depends on precipitation on previous days), the series should be stationary

with very weak dependence between large observations (e.g. of daily precipitation) that are very

far apart (see Coles, 2001, section 5.2 for details).

In addition, block sizes must be sufficiently large for the block maximum to converge towards the

limit distribution. In particular, if X1, . . . , Xn is not independent (but stationary), an even larger

block may be necessary for convergence to be achieved.
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Remark. For certain distributions F , a non-degenerate limit distribution function does not exist;

this is the case, for instance, for the Poisson and geometric distribution, which both describe

discrete counting processes. For such distributions, the maxima cannot be described by a GEV.

The three types of limit distributions are the Weibull, Gumbel, and Fréchet families of distributions.

They can be summarized in one parameterization of the limit model - in exchange for an additional

parameter (von Mises, 1954; Jenkinson, 1955). This generalized limit distribution, known as the GEV

distribution (definition 1), will be used for the subsequent analyses.

Definition 1 (GEV distribution). The family of distributions defined on the set {z : 1+ξ(z−µ)/σ >

0} via

G(z) = exp

(
−
{

1 + ξ

(
z − µ
σ

)}−1/ξ)
with −∞ < µ < ∞, σ > 0, and −∞ < ξ < ∞, is called the generalized extreme value family

of distributions (GEV distribution). The parameter µ is a location parameter, the parameter σ

is a scale parameter and ξ is a shape parameter. The subset of the GEV family with ξ = 0 is

interpreted as the limit as ξ → 0.

Example (GEV distribution). Examples of

Weibull (µ = 45, σ = 11, ξ = −0.1),

Gumbel (µ = 45, σ = 11, ξ = 0), and

Fréchet (µ = 45, σ = 11, ξ = 0.25)

probability density functions. These distributions and their samples will be used throughout the

document to illustrate extremal behavior, estimation behavior, uncertainties, and exceedance

probabilities.

They loosely resemble the 1-day-accumulated precipitation annual maxima distributions at Fri-

bourg (not shown), Genève, and Zürich-Fluntern, respectively.

The cumulative distribution function (CDF) and probability density function (PDF) of a Weibull (red),

a Gumbel (black) and a Fréchet (blue) distribution are shown in figure 13. All three have a location

parameter µ = 45, and a scale parameter σ = 11. They differ by their shape parameter ξ, which is

negative (in this example ξ = −0.1) for a Weibull, zero for a Gumbel, and positive (in this example

ξ = 0.25) for a Fréchet distribution (see generalized parameterization of definition 1).

Figure 14 shows the PDFs of the three example distributions seen in figure 13, here in separate plots,

with the histograms of the respective samples appearing in figure 15. Figure 15 shows random sam-

ples (of equal length) drawn from these three distributions: these can be imagined as time-series of

annual maxima of daily precipitation.
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Figure 13: Three extreme
value distribution functions
(left: cumulative distribution
function (CDF); right: proba-
bility density function (PDF))
belonging to the Weibull (red;
ξ = −0.1), Gumbel (black;
ξ = 0), and Fréchet (blue;
ξ = 0.25) distribution fam-
ilies, respectively. All three
have the same location pa-
rameter (µ = 45) and scale
parameter (σ = 11). 0 50 100 150 200
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Remark. The three different families of distributions are distinguishable by their tail behavior,

and in particular by the rate of decay in the tail:

• The Weibull family, i.e., the subset of GEV distributions with ξ < 0, has a finite upper end-

point (figure 13 red line - also called type III or bounded). Thus, there is 0 probability for

values above that end-point to occur.

• The Gumbel, family, i.e., the subset of GEV distributions with ξ = 0, has an infinite upper

end-point. The tail of the probability density distribution decays exponentially (figure 13,

black line - also called type I or light-tailed). Thus, regardless the value, there is a non-

vanishing probability for a higher value to occur.

• The Fréchet family, i.e., the subset of GEV distributions with ξ > 0, has an infinite upper

end-point. The tail of the density distribution decays polynomially (figure 13, blue line - also

called type II or heavy-tailed). Here too, whatever the magnitude of the event, a larger one

has a non-negligible probability to occur.
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Figure 14: Probability density functions of figure 13 (solid lines) of the Weibull (left, red, ξ = −0.1), Gumbel
(center, black, ξ = 0), and Fréchet (right, blue, ξ = 0.25) distribution, with a location parameter of 45 and a scale
parameter of 11. The underlying histograms (with 50 breaks) show the empirical densities of samples drawn
from these three distributions. The samples can be viewed in the form of the fake time series in figure 15. The
vertical dotted line represents the sample median, while the dashed vertical line at 100 is meant to ease compar-
ison between panels, and with figure 15.
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Figure 15: Three samples of length 100 drawn from the Weibull (left, red, ξ = −0.1), Gumbel (center, black,
ξ = 0), and Fréchet (right, blue, ξ = 0.25) distribution, with a location parameter of 45 and a scale parameter
of 11. The horizontal lines indicate, as in figure 14, the sample median (dotted line) and the value 100 (dashed
line).

4.2 Inference for the GEV distribution

Inference is - one could say - an educated guess of the distribution, based on the available sample.

According to Karl Pearson (1857-1936), observations are only a random manifestation of a deeper, but

abstract reality, the probability distribution of our quantity of interest (Salsburg (2001)). This revolution-

ary view took shape towards the end of the 19th century, when, despite an increase in measurement

accuracy of physical instruments, observations appeared to maintain a degree of randomness. How-

ever precisely we measure, we cannot predict the exact outcome of an individual measurement. In

other words, the true quantity we are looking for is invisible to our eyes. In fact, it is not even a fixed

value, but a probability distribution characterized by fixed parameters; the nature of the randomness

we witness is encapsulated in these parameters. They cannot be measured (para-meter = almost-

measurement in Greek), but must be inferred from the observations and the way they scatter.

Along with this revolutionary view came the frequentist definition of probability proposed by John Venn

in 1872: if we can run identical trials an illimited number of times, the proportion of times an event

occurs is the probability that this event occurs (Salsburg (2001)). Together, these ideas form the

foundation of frequentist inference. This is of consequence for the interpretation of confidence intervals,

an important aspect of inference. The 95% confidence interval estimated from our particular observed

sample either will or will not contain the true value, and we do not know which of the two. In fact,

we do not even know the probability of finding the true value within the confidence bounds. The 95%

probability statement pertains to the chance, in a very large number of hypothetical, similar experiments

(parallel universes with similar climates, perhaps), that one of the calculated intervals actually contains

the truth; or, to formulate it in a frequentist way, it pertains to the proportion of these hypothetical

intervals that will contain the truth.

Bayesian inference views things from another angle. The parameters of the distribution are random,

and are conditional on the observed measurements (Salsburg (2001)). This means the parameters

have a probability distribution, which represents their uncertainty. We propose a probability distribution

for each parameter, measure the quantity we are interested in, then update the probability distributions

of the parameters accordingly. Uncertainty is explicitly taken into account from beginning to end, and
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confidence intervals (or credible intervals in Bayesian jargon) can be formulated in such a way that they

contain the ”true” value with a given probability. It is interesting to note that having the results in the

form of a probability distribution is very convenient for decision making, which is generally not based on

the value of the parameter itself, but on its consequences for some other quantity (often a currency).

The extreme value analyses presented today on the web platform (http://climate-extremes.ch),

are carried out within the Bayesian framework. Previous versions of the analysis relied, however, on

frequentist inference. In the following, we discuss several approaches of parameter estimation, both

within the frequentist and the Bayesian inferential frameworks.

Several frequentist methods exist to estimate the underlying GEV distribution from the data at hand.

Here, we present two of them: the Maximum Likelihood (ML) method and the method of L-moments.

Bayesian inference, which can be seen as as an extension of Maximum Likelihood estimation, is ex-

plained in section 4.2.3.

In each section, we discuss first parameter, then uncertainty estimation. In the frequentist framework,

the only source of uncertainty that we can quantify is the one due to the finite size of the sample of

observations, compared to the hypothetical, infinite population. The uncertainty then essentially de-

scribes a range of values that would also be consistent with the data at hand. For some frequentist

estimation methods, as is the case for Maximum Likelihood estimation, the quantification of uncertain-

ties is a consequence of the theoretical foundation. For others, such as L-Moments, an alternative can

be found in bootstrapping methods.

Remark. As was customary at the time, the approach of Zeller et al. (1976-1992) was to first opt

for one of the extremal distribution families, and then estimate the scale and location parameter

using regression methods.

In practice, this meant selecting a particular sheet of paper with the corresponding pre-drawn

graphon it, either with a log or a log-log scale. Thus, the estimation hinges on the preliminary

(educated) guess of the appropriate family.

“But”, as pointed out by (Coles, 2001, p. 47) “there are two weaknesses: first, a technique is

required to choose which of the three families is most appropriate for the data at hand; second,

once such a decision is made, subsequent inferences presume this choice to be correct, and

do not allow for the uncertainty such a selection involves, even though this uncertainty may be

substantial.”

With the adoption of the generalised extreme value distribution parametrization, “the uncertainty

in the inferred value of ξ measures the lack of certainty as to which of the original three types is

most appropriate for a given dataset.“ (Coles, 2001, page. 48)
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Remark. There exist several sources of uncertainty, not all of which can be quantified:

• the data quality, measurement errors, or the representativeness of the data

• the model choice (GEV distribution)

• the violation of model assumptions, such as that the maxima are independent and identi-

cally distributed (i.i.d.), or that the selected blocks are sufficiently long to ensure conver-

gence toward the GEV

• the estimation of model parameters

• the interpretation of probabilistic results (stochastic uncertainty / sampling uncertainty)

Notation. To avoid multiple indices we denote with Zi the maximum Mn of block i, and omit the

information on the block length n. You can imagine {Z1, . . . , Zm} as the set of m annual maxima

of daily precipitation.

In the Bayesian framework, the parameters of the GEV distribution are random variables. Let

Θ denote the (vector) random variable for the three GEV parameters, and θ = (µ, σ, ξ) one

particular realization of Θ.

4.2.1 Maximum likelihood estimation

Maximum likelihood (ML) estimation looks for the (distribution) parameters that are most likely to have

led to the sample at hand, assuming that the largest values of the process of interest are indeed

described by the chosen distribution family, here the GEV distribution.

The likelihood that an arbitrary set of GEV parameters led to the observations can be written as the

probability that all of these observations {Z1, . . . , Zm} should occur jointly. Letting this probability

depend on the set of GEV parameters and checking whether the likelihood increases or decreases

as the parameters vary allows us to look for the set of parameters most likely to have produced our

observations {Z1, . . . , Zm}.

The likelihood of drawing the recorded values from one particular distribution of the GEV family can

be represented as an n-dimensional surface, where n is the number of parameters of the distribu-

tion. Maximizing this likelihood function or its logarithm (the log-likelihood) yields an estimate of the

parameters.

Parameter estimation The log-likelihood function, `, derives from the distribution function. In our

analyses, the numerical optimization for obtaining the minimum of −` is done with Nelder-Mead at

initial values estimated by L-moments with a fixed ξ = 0.1 (see section 4.2.2 or Hosking (1990) for

details).
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Definition 2. Log-likelihood function of the GEV, at z1, . . . , zm,

`(µ, σ, ξ|z1, . . . , zm) =

−m lnσ − (1 +
1

ξ
)

m∑
i=1

ln

[
1 + ξ

(
zi − µ
σ

)]
−

m∑
i=1

[
1 + ξ

(
zi − µ
σ

)]− 1
ξ

Notation. To distinguish between theoretical and estimated parameters, one uses the notation

of a small hat above the parameter name, e.g., ξ denotes the theoretical shape parameter, while

ξ̂ denotes the estimated shape parameter.

Let us estimate the parameters using ML estimation for the example distributions in example 4.1. For

each of the samples in figure 15, ML estimation was used to estimate the distribution of the population

as if the sample were a set of maxima of blocks of observations. Figure 16 shows the histograms of

our samples with the true distribution (solid lines) as in figure 14, as well as the estimated distribution

(dashed lines) of the population. The histogram can be understood as the empirical ”PDF“, i.e., without

the assumption of a model. The dashed lines show the distribution estimated by maximum-likelihood

from the samples. The vertical lines represent the median of the theoretical (solid line) and of the

estimated (dashed line) distribution. Keep in mind that this is a sandbox example in which we know

the distribution of the population the sample was drawn from (solid lines). In real life, of course, the

population is unknown. We call the estimated distributions (dashed lines) fitted models, because they

are adapted to the observed data.
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Figure 16: Histograms of the Weibull (m = 100, left, red), Gumbel (m = 100 center, black), and Fréchet sample
data (m = 100, right, blue) seen in figure 15. Overlaid are the PDFs fitted by Maximum Likelihood to the sam-
pled data (dashed lines), and the theoretical PDFs (solid lines, see figure 14) of the true distributions from which
the data was sampled.

Both the PDFs and the medians of the distributions differ (figure 16), the more so for the heavy-tailed

distribution (right panel). Thus, inferring the underlying distribution from a small sample is difficult, and

the inferred information is inherently uncertain, because it depends on the particular sample we used.

In the setting of maximum likelihood estimation, the uncertainty of the estimates can be reduced by

increasing the number of independent maxima.

For the interpretation of uncertainties it is very important to keep in mind that it is an uncertainty of the

estimates - similar to the uncertainty in the assessment whether a coin is fair based on a sample of

coin tosses - and not an uncertainty about the “prediction” of an event - as the uncertainty whether the

outcome of tossing a coin is heads or tails.

The example (figure 16) illustrates the inherent uncertainty of inference with few observed extremes.
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Here, we have estimated the distribution from m = 100 years; by construction, we can be certain that

all assumptions - data quality, representativeness (but for sample size), Zi independent and identically

distributed (iid), model choice - are fulfilled, and only the estimation uncertainty still remains (and

stochastic uncertainty, which does not play a role in this section). Of course, this is not the case in real

life.

Even though all our assumptions are correct, the fitted model deviates from the true distribution. This

remaining uncertainty is the estimation uncertainty.

Uncertainty estimation ML estimation provides a theoretically founded approximation for the esti-

mation of uncertainties. Standard errors of maximum likelihood estimates can be calculated easily.

Nevertheless, using the profile likelihood function is recommended, as it allows for asymmetric confi-

dence intervals (CIs).

Definition 3. Profile log-likelihood confidence intervals for ξ̂, σ̂ or µ̂.

For uncertainty estimates of ξ̂, one fixes ξ = ξ0 for a range of ξ0, e.g. from −1.5 to 2, and for

each ξ0 maximizes the log-likelihood function with respect to µ and σ, given the observations.

Thus one obtains a concave function of ξ with a maximum at ξ̂. Approximate confidence intervals

can be derived based on the fact that two times the difference in the log-likelihood function at ξ0
and ξ̂ follows a χ2

1 distribution (see Coles, 2001, section 2.6.6 p.35 for details). The same can

be done for µ̂ and σ̂.

In figure 17 we see the profile log-likelihood functions (black solid lines) for all parameters. The vertical

solid lines represent the true parameters and the three grey dashed vertical lines indicate the ML

estimate, with the 95% confidence intervals (1.96 × semle) on either side, where semle denotes the

standard error estimated by Maximum Likelihood. The profile log-likelihood CIs are represented by

the blue dashed vertical lines. They mark the intersection of the profile log-likelihood function with the

critical value of the χ2
1 distribution (lower blue horizontal line).

As expected, the true values for bounded (Weibull) or light-tailed (Gumbel) type samples are well within

the CIs (regardless of the approximation method) and the two methods for approximating the CIs hardly

make a difference. For the sample of Fréchet type, on the other hand, even though the CIs are larger

than in the other two cases, the true value is just barely within the CI based on the standard errors.

Thus, taking confidence intervals into consideration in practical applications is essential if ’capturing’

the true value is of any importance, and extreme value analyses should mention these inherent uncer-

tainties explicitly.

The width of the CI depends on sample size. The example presented here had a sample size of

100. In real life situations, however, we often have only 40 years of observations at our disposal. For

comparison, we have plotted in figure 18 the profile log-likelihood functions for sample size 40 drawn

from the same population distribution as in figure 13. Evidently, the confidence intervals for each

parameter are considerably larger than with 100 years of data. Thus, shorter data records yield larger

CIs.

In addition, both the inferred distribution and the approximated confidence intervals depend on the

sample at hand. Figure 19 illustrates the fact that subsamples of equal size (m = 40) result in different
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Figure 17: Profile log-likelihood functions (solid black curves) for each parameter - location (left), scale (cen-
ter), shape (right)- estimated from the Weibull (top, m = 100), from the Gumbel (center, m = 100) or from the
Fréchet (bottom, m = 100) sample data. The blue horizontal solid lines mark the maximum value of the profile
log-likelihood function (corresponding to the ML estimate) and the critical value (95%) of the χ2

1 distribution. The
profile likelihood 95% confidence intervals are indicated by the 2 blue dashed vertical lines, the maximum like-
lihood estimate and 95% confidence intervals are indicated by the 3 grey dashed vertical lines. Finally, the true
value is indicated by the solid vertical lines (Weibull in red, Gumbel in black, and Fréchet in blue).
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Figure 18: Profile log-likelihood functions (solid black curves) for each parameter - location (left), scale (center),
shape (right) - estimated from the Weibull sample data (m = 40, top), from the Gumbel sample data (m = 40
center), and from the Fréchet sample data (m = 40, bottom). The profile likelihood 95% confidence intervals are
indicated by the blue dashed vertical lines, the maximum likelihood best estimate and 95% confidence intervals
are indicated by the grey dashed vertical lines and the true value is indicated by the solid vertical lines (Weibull in
red, Gumbel in black, and Fréchet in blue).
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inferred distributions, although they were drawn from the same population. The difference is particularly

striking when drawing from the Fréchet family.
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Figure 19: Six fitted PDFs (dashed and dotted lines) estimated from two subsets of Weibull sample data (m =
40, left, red), two subsets of the Gumbel sample data (m = 40, center, black), and two subsets of the Fréchet
sample data (m = 40, right, blue). The theoretical PDFs of figure 14 are represented by solid lines and are
considered as “truth”.

Conclusions regarding the temporal evolution of the behavior of extreme events therefore cannot be

based on fitting distributions within different time periods (for instance 1901 - 1950, 1951 - 2000)

and comparing the estimates without taking into account the uncertainties. For such a task, rather

sophisticated tests designed specifically for extremes are necessary.

4.2.2 L-moments estimation

The L-moments (Hosking, 1990) belong to the class of moment estimators, which are quite popular

among hydrologists for the estimation of the GEV parameters. One minor drawback of this method

is the lack of theoretically derived uncertainty estimates, but this can be circumvented by parametric

resampling (see below).

Parameter estimation

Definition 4. L-moment estimation of the GEV parameters (Hosking, 1990)

ξ̂ ≈ −7.8590
(

2
(3+t3)

− ln 2
ln 3

)
− 2.9554

(
2

(3+t3)
− ln 2

ln 3

)2
with t3 = l3/l1, a

σ̂ = l2
−ξ̂

(1−2ξ̂)
Γ(1− ξ̂) with l2 = 1/2 1

(n2)

∑∑
i>j(x(i) − x(j)), and

µ̂ = l1 − σ̂
ξ̂

(
Γ(1− ξ̂)− 1

)
with l1 = 1

n

∑
i xi.

al3 = 1/3 1(
n
3

) ∑∑∑
i>j>k(x(i) − 2x(j) + x(k))

Here, in figure 20, we see the L-moments estimates in addition to the maximum likelihood estimates.

The difference between the estimates is very small.

Uncertainty estimation For confidence interval estimations, we choose a parametric resampling

approach with a sample size of 3000.

The idea is to generate surrogate data from the estimated distribution, representing possible, addi-

tional samples. Samples of the same size as the original sample of observations are drawn from the

estimated distribution, which is entirely characterized by the estimated parameters, hence the name
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Figure 20: Same as fig. 16, with, in addition, the L-moments estimated PDFs (dotted lines).

“parametric resampling”. (Some bootstrapping methods resample the observed data, rather than sam-

pling randomly from the estimated GEV).

The new, surrogate, samples then serve as starting points for new estimates of the underlying dis-

tribution. From the resulting, here 3000, simulated distribution estimates, we construct 2-sided 95%

confidence intervals, by taking the 2.5% and the 97.5% quantiles of the estimated quantity.

4.2.3 Bayesian Inference

In Bayesian inference, rather than estimating the parameter θ of the distribution that we believe gener-

ates the observations, we estimate a distribution for the parameter θ itself, conditional on the observed

values z. The probability density function of θ given the observations z is called the posterior distri-

bution, because it incorporates information available only after the values z have been observed. It

is the ingredient we need to calculate any statistics that describe the behavior of θ (means, moments,

quantiles, etc.), as well as any probabilistic quantities necessary for decision making.

We can obtain the posterior distribution easily by using the rules of conditional probability. If, for any θ,

we know the following probability distributions, we can simply multiply them:

• the probability that our observations were produced by this particular θ,

• the probability that this particular θ should occur, i.e. that it was this particular set of parameters

that governed the processes generating the observations.

Strictly speaking, this product should be normalized by the probability density of the observed quantity.

As we shall see below, however, the product, as it is, suffices in practice to draw a large sample of θs

distributed approximately as the posterior distribution.

The first probability distribution is easy to formulate: it is the likelihood function mentioned in section

4.2.1. The second is a distribution that reflects previous experience regarding the range of parame-

ter values, i.e. knowledge available before having inspected the data. Accordingly, it is named prior

distribution, as it represents information gathered before observing. The estimate of the posterior

distribution of θ given z will then derive information both from the observations and from the prior distri-

bution. The prior distribution expresses the general experience of the analyst, and is, to some extent,

subjective. In many cases, the analyst’s knowledge is vague, and the prior distribution is purposely

shaped so as to express this vagueness. In such a case, all the information comes from the observa-
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tions.

Notation. In this section, we need to introduce a few more notations:

• θ = (µ, σ, ξ): a parameter triplet of the GEV.

• z: an observation. For instance {z1, . . . , zm}, the m yearly maxima of daily precipitation.

• p(θ): probability density function of θ regardless of any observations, or before any infor-

mation on the quantity Z was available.

• p(z): probability density of z, regardless of θ.

• The vertical line in p(a | b) means “conditional” on. Read: the probability density of a, given

that b has occurred.

• p(z | θ): probability density of z, given that θ is the parameter triplet of the GEV. If z is fixed

and θ varies, this is the likelihood function (and is no longer a probability density).

• p(θ | z): probability density of θ, given that z has been observed.

• θ-space: 3-dimensional space of possible values of the GEV parameters.

Details. Bayes’ rule

Let θ denote the parameter of the distribution family assumed to have led to the observations z.

Let p(θ, z) denote the joint distribution of θ and z.

Bayes’ rule states that

p(θ | z)p(z) = p(θ, z) = p(z | θ)p(θ)

⇒ p(θ | z) =
p(z | θ)p(θ)

p(z)

Note that p(z) does not depend on θ, and is therefore a constant. In practice, as we shall see

below, p(θ | z) will be sampled using the product p(z | θ)p(θ), so that it will not be necessary to

calculate p(z) explicitly.

Bayesian inference proceeds in three steps. First, a model must be selected to represent the process

producing the observed data. Second, a (joint) prior distribution must be formulated for the parame-

ter(s) of the model distribution. Third, the (joint) posterior distribution of the parameter(s) is calculated

or sampled.

Step 1: select a model We assume that the yearly (or seasonal) maxima follow a GEV distribu-

tion (definition 1 in section 4.1). Thus, our task is to estimate the joint distribution of the three GEV

parameters µ, σ, and ξ, given the observed yearly (or seasonal) maxima.
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Step 2: select and “customize” the prior distribution Since the GEV has three parameters, the

prior distribution must be a joint probability distribution for the triplet θ = (µ, σ, ξ). For simplicity, we

assume that, in the prior distribution, µ, σ, and ξ are independent of each other. This allows us to define

a prior distribution for each parameter separately, and multiply them to obtain the prior distribution of θ.

For describing the prior probability distribution of the shape parameter, we choose the beta distribution,

a family of continuous probability distributions defined on the interval [0, 1], parameterized by two shape

parameters α and β. For our purposes, we choose the beta distribution B(α = 2, β = 2) and define it

on the interval [−0.5, 0.5]. It is represented by the blue line in Fig. 21. It is symmetric, centered on zero,

and the probability that ξ is outside of [−0.5, 0.5] is 0. In other words, we assume the distributions to be

mostly close to a Gumbel distribution, allowing for deviations up (down) to 0.5 (−0.5). The symmetry

of the prior distribution expresses our belief that the Weibull and the Fréchet form are equally likely

(see fig. 13 for examples). The decreasing form towards the limits 0.5 and −0.5 translates our past

experience with extreme value analyses of precipitation that very small and large values of the shape

parameter are less compatible with observed data, and therefore less likely. As it turned out, this

constraint was instrumental in reducing unrealistic estimates of the shape parameter, as were often

encountered in the frequentist framework.

For the location and scale parameters, we assume a non-informative Gaussian, i.e. a normal dis-

tribution with a standard deviation so large that the distribution is practically flat. Here, we take the

standard deviation of the Maximum Likelihood (see section 4.2.1) estimate µ̂ inflated by a factor 1000.

This choice expresses our ignorance about the location and scale parameter. In other words, although

technically we define a prior distribution, it carries essentially no information. The estimates will then

be completely determined by the observations. If we had selected an uninformative prior distribution

for all three parameters, the triplet that maximizes the posterior density would be the same as that

obtained by Maximum Likelihood estimation.
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Figure 21: Histogram of the estimated shape parameters. Blue line: prior distribution for the shape parameter.
Red line: median of the estimated shape parameters. Green line: stipulated true shape parameter. Pseudo-data
samples of sample size 100 are drawn from the three GEV distributions of example 1 in section 4.1 (µ = 45,
σ = 11, and ξ = −0.1, 0, 0.25, respectively for the Weibull, Gumbel, and Fréchet distributions). Left: Weibull;
center: Gumbel; right: Fréchet. The shaded areas are outside of the 95% confidence intervals. The pseudo-data
samples do not appear on the graph. Note that they differ from the samples in fig. 13.
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●
●

θnew θold

Pr{ jump to θnew} = 1

●
●

θnew θold

Pr{ jump to θnew} = p(y|θnew)p(θnew)
p(y|θold)p(θold) < 1

Figure 22: Illustration of the Metropolis algorithm. The blue line represents the function f(θ) = p(z | θ)p(θ). It
is essentially the posterior distribution p(θ|z) we are looking for, except that it is not strictly speaking a probability
distribution because it has not been normalized by p(z). The value θnew is randomly drawn from a normal distri-
bution centered on θold (grey shading; corresponds to a random Gaussian walk). The probability of jumping from
θold to θnew (and adding it to the sample) depends on whether f(θnew) > f(θold). On the left, θnew is accepted,
as would any value for which f(θnew) > f(θold). On the right, since f(θnew) < f(θold), we accept θnew with a
probability p = f(θnew)/f(θold) < 1: we “roll the dice” by drawing from a uniform distribution on [0, 1]. Suppose
we have p = 0.6; if we draw a number between 0 and 0.6, we jump to θnew; otherwise, we stay at θold and draw
a new proposal θ from the normal distribution.

Step 3: determine the posterior distribution We are looking for p(θ | z), the probability density

function of θ, given the occurrence of observations z. In other words, we are looking for the joint

distribution of the GEV parameter triplet θ, now that we know the values z have been observed.

According to Bayes’ rule, the posterior probability density is proportional to the prior probability density

p(θ), constrained by the likelihood p(z | θ) that the observed values z could have been produced by

θ. In our case, the likelihood is that of the GEV (see definition 4.2.1 for the expression of the GEV

log-likelihood).

In real life problems, p(θ | z) can rarely be determined in analytical form. An alternative is to obtain

an empirical distribution based on a large sample of θs drawn directly from p(z | θ)p(θ). Unfortunately,

sampling directly from p(z | θ)p(θ) is not possible if the model has several parameters, as is the case

for the GEV. In such a case, one resorts to a procedure called Markov Chain Monte Carlo (MCMC)

(see for instance Gelman et al., 2013, ch.11). The purpose is to sample lots of θs in areas of θ-space

where p(z | θ)p(θ) is large (high probability density), and few of them where p(z | θ)p(θ) is small (low

probability density). The term Markov Chain refers to the fact that each sampled θ will depend, for

technical reasons, on the previously sampled one.

Starting at a given value of θ, say θold (for instance the Maximum Likelihood estimate θ̂), we randomly

propose a new value of θ, say θnew in the vicinity. This can be done for example by sampling from a

normal distribution centered on θold (Gaussian random walk). If the product p(z | θ)p(θ) is larger for

θnew than for θold, we jump to θnew and add it to our sample. If it is smaller for θnew than for θold, we

only sometimes jump to θnew and add it to our sample: we ”roll the dice” and only jump at a rate that

reflects how much smaller the probability density for θnew is than for θold (i.e. we jump often if it is not

so much smaller, and rarely if it is much smaller). If we happen not to jump, we stay where we are

without re-adding θold to our sample. The procedure is illustrated in fig. 22.
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Details. The result of the bayesian analysis is a large set of MCMC-sampled triplets {θ1, ..., θS} =

{(µ1, σ1, ξ1), ..., (µS , σS , ξS)} that approximate the joint probability distribution of µ, σ, and ξ

given our observations z. In our case, S = 1000. Each of these location, scale, and shape

triplets θs, s = 1, ..., S represents a different GEV distribution Gs = G(z; θs = (µs, σs, ξs)).

As we shall see below, this MCMC-sampled set of triplets and their corresponding GEV distri-

butions allow us to derive confidence intervals for the GEV parameters, return levels and return

periods, and even the goodness of fit results.

Figure 21 shows the histogram of ξ values thus “MCMC-sampled” for artificial data generated with the

Weibull, Gumbel, and Fréchet distributions of example 1. The stipulated true values of ξ for each of

these population distributions are represented by the vertical green lines. The histogram approximates

the posterior distribution of the shape parameter. Its median (vertical red line) can be used as the

estimate for ξ. We can see that, after having included the information provided by the observed data,

the posterior distribution is considerably narrower than our prior distribution. Depending on the set of

artificial data, the Weibull and Fréchet form are no longer equally likely, except approximately so in

the case of Gumbel artificial data. In fact, for Weibull (Fréchet) artificial data, the probability that the

distribution is of form Fréchet (Weibull) is 2.7% (0.3%). (The possibility to calculate such probabilities

so easily is a useful consequence of Bayesian inference).

In the analyses on the web platform (http://climate-extremes.ch), the MCMC simulation chain

consists of a Metropolis algorithm using a Gaussian random walk for proposing new parameter values.

The standard deviation of the random walk is taken to be the asymptotic standard error of the Maximum

Likelihood estimate.

Uncertainty estimation In the Bayesian framework, the uncertainties are explicitly quantified in the

posterior distribution of θ given our observed yearly (or seasonal) maxima z. Traditionally, they are

called credible intervals, no doubt to distinguish their interpretation from that of confidence intervals

in the frequentist framework. For convenience, however, we will keep the albeit incorrect appellation

confidence intervals.

Details. By definition, equal-tailed 95% confidence intervals contain 95% of the posterior proba-

bility distribution, and put an equal amount of probability in each tail: 0.025.

The bounds of the 95% confidence intervals of µ, σ, and ξ are therefore the 2.5% and 97.5%

quantiles of the MCMC-sampled values {µ1, ..., µS}, {σ1, ..., σS}, and {ξ1, ..., ξS} respectively.

In fig. 21, the area outside of the 95% confidence intervals is depicted on a grey background. The con-

fidence intervals are not symmetric with respect to the median of ξ (red vertical line), as the posterior

distributions of ξ are somewhat skewed to the right.
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4.3 Assessing the fit of the model

The validity of the model assumptions usually cannot be checked in a systematic manner. However, it

is possible to compare the empirical distribution G̃, that makes no assumptions regarding an underlying

model, with the estimated distribution Ĝ.

Notation. G̃: empirical distribution, i.e., for each value of the sample, the proportion of the total

number of values in the sample that is below it.

Ĝ: estimated distribution.

This can be done with diagnostic plots or with goodness-of-fit tests. Diagnostic plots are visual guides

to the validity of model assumptions, and will be introduced in section 4.3.1 below. Goodness-of-fit

tests quantify the difference between empirical and estimated distribution and are presented in section

4.3.2.

4.3.1 Visual guides

Probability-probability (empirical vs. estimated probability) and quantile-quantile (empirical vs. esti-

mated quantile) plots are instruments for visual inspection of fit reliability. The empirical and estimated

probabilities (quantiles) are plotted against each other. Should the estimated distribution describe the

observed data well (up to sampling uncertainty), the points should line up along the line of slope 1 and

intercept 0.

Although they offer essentially the same information, probability-probability (PP) plots and quantile-

quantile (QQ) plots highlight different areas of the distribution.

PP-plots The probability-probability plot plots the estimated probability against the empirical proba-

bility.

Definition 5 (probability-probability-plot.). A probability-probability plot consists of the points{(
Ĝ(z(i)), G̃(z(i))

)
: i = 1, . . . ,m

}
,

where z(i), i = 1, . . . ,m, are the ordered observed values, z(1) ≤ . . . ≤ z(i) ≤ . . . ≤ z(m), G̃ is

the empirical distribution function and Ĝ the estimated distribution function.

In the context of extreme values, the PP plot has a weakness: By definition, both the estimated and

the empirical probabilities are bound to approach 1 as the quantile increases. Therefore, the PP plot

offers little (or no) information in the region of most interest.

The QQ plot circumvents this weakness by changing the scale.

QQ-plots The quantile-quantile plot associates to each value of the ordered sample (e.g., a maximum

over a block) the corresponding quantile of the estimated distribution.
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By definition, the cumulative distribution function at a given value zp gives the probability p that any

of the values up to (and including) zp may be realized. The value zp is then called the p-quantile:

Pr{Y ≤ zp} = p. The median of a distribution, for instance, is its 1
2 -quantile or 50%-quantile; if z0.5 is

the median, there is a 50% chance for a realization of the random variable to be below z0.5. If z0.75 is

the 75%-quantile, there is a probability of 75% that any value smaller or equal z0.75 will be be realized.

Thus, if a sample value is such that 75% of sample values are below it, it will be associated on the

QQ-plot with the 75%-quantile of the estimated distribution.

If the model is appropriate for the data at hand, the empirical quantiles of the data should approximately

agree with the estimated quantiles, the more so for a large sample.

For the upper quantiles, empirical quantiles that are systematically smaller than the fitted ones suggest

that the tail of the true distribution may decay more slowly than that of the fitted distribution.

Definition 6 (quantile-quantile-plot.). A quantile-quantile plot consists of the points{(
Ĝ−1(

i

m+ 1
), z(i)

)
: i = 1, . . . ,m

}
,

where z(i), i = 1, . . . ,m, are the ordered observed values, z(1) ≤ . . . ≤ z(i) ≤ . . . ≤ z(m), Ĝ
is the estimated distribution function, and i

m+1 is an empirical estimate of the return period of
observation of order (i).
(This particular empirical estimator of the return period is called Weibull estimator and is one of many suggested in the

literature).
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Figure 23: Suite of diagnostic
plots for the Weibull sample
(m = 100, left panel on fig.
15) as provided by the R-
package ismev. Note that
the CIs are based on the ML
estimation standard errors
and therefore the upper limit
of the CI is underestimated.
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Figure 24: Suite of diagnostic
plots for the Gumbel sample
(m = 100, center panel on
fig. 15) as provided by the
R-package ismev. Note that
the CIs are based on the ML
estimation standard errors
and therefore the upper limit
of the CI is underestimated.
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Figure 25: Suite of diagnostic
plots for the Fréchet sample
(m = 100, right panel on
fig. 15) as provided by the
R-package ismev. Note that
the CIs are based on the ML
estimation standard errors
and therefore the upper limit
of the CI is underestimated.
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Bayesian framework In the Bayesian framework, rather than one GEV distribution indexed by a

specific parameter triplet θ, we estimate a (posterior) distribution for θ. In order to obtain quantiles for

the QQ plots, we make use of the large posterior sample of GEV triplets resulting from the MCMC

procedure (see section 4.2.3), which approximates the posterior joint distribution of GEV parameters.

For each of these S = 1000 MCMC-sampled GEVs, we calculate the m quantiles corresponding to the

m ordered observed values z(1) ≤ . . . ≤ z(i) ≤ . . . ≤ z(m), as in definition 6. Each of the m quantiles

appearing on the QQ plot is the median of the S = 1000 quantiles thus calculated.

Seasonal analysis If the analysis was applied to seasonal —rather than yearly —maxima, the quan-

tiles must be derived numerically from the seasonal quantiles. Details can be found in section 4.5,

where the procedure is described for return levels.

4.3.2 Goodness-of-fit criteria

We employ goodness-of-fit methods based on empirical distribution statistics, such as the well-known

Kolmogorov-Smirnoff (KS) and Cramer-von Mises (CM) statistics but also statistics that put more

weight on the tail, i.e., on the rarer events of the distribution.

In a first step, we consider the root-mean-square-error (RMSE) between empirical and estimated dis-

tribution (see table 5). In addition, we assess the appropriateness of the fit of the model via goodness-

of-fit tests. Goodness-of-fit tests test if the overall distance between the empirical distribution and the

estimated distribution is significantly different from zero.

As with the visual guides, one can perform the tests on different scales, and / or put weight on areas

of the distribution one is interested in. As we would like to draw conclusions regarding the behavior of

extremes, we need the right tail of the distribution to be reliable.

To this end, we apply the suite of tests listed in table 5 (see Luceno (2006) for further details). The

null hypothesis (H0) is that the empirical and estimated distribution are the same. Rejecting the null

hypothesis indicates that the estimated distribution deviates from the empirical distribution more than

to be expected by chance.

Frequentist framework For each test, the critical values are obtained by parameteric resampling: a

set of 3000 samples of the same size as the observed sample is drawn from the estimated distribution;

a GEV is fitted to each of these simulated samples, and the value of the test statistic is estimated; the

95% quantile of these test statistic values is the critical value of the test.

Bayesian framework To set up the goodness of fit criteria in the Bayesian framework, we followed

chapter 6, “Model Checking”, of Gelman et al. (2013). The question we want to answer is: “Could our

data have been produced by the range of parameters of the posterior distribution we have estimated?”.

In order to test that, we make use of the large posterior sample of GEV triplets obtained by MCMC

that approximate the joint posterior distribution of GEV parameters: for each of these GEVs, we can

calculate one of the goodness-of-fit tests described above.
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Suppose now, that for each of these MCMC-sampled GEVs we drew a sample of artificial observations

(of the same size as the original sample), and calculated the same test, but with the artificial data. The

value of these tests will reflect the typical test results if the data are actually generated by these GEVs.

Will we be able to distinguish the actual from the artificial test results in any way? If we can’t, we can

assume that our model represents the observed data to an acceptable degree.

Details. Let z = {z1, ..., zm} be the observed sample. We have S = 1000 MCMC-sampled

GEV distributions that approximate the posterior distribution. Each of these S distributions

Gs = G(z; θs = (µs, σs, ξs)), s = 1, ..., S is indexed by a location, scale, and shape triplet

that we call θs. Let T represent any of the tests listed in table 5 (KS, CR, AD, ...); it depends on

the data and the GEV distribution the data is meant to originate from.

• Step 1: For each s, we calculate the value of the test T (z; θs).

• Step 2: We draw a “replicate” sample z∗s = (z∗s 1, .., z
∗
sm) of length m from each MCMC-

sampled GEV Gs.

• Step 3: For each of these replicate samples, we calculate the value of T (z∗s ; θs).

• Step 4: We compare the distributions of T (z) and T (z∗). Since T is essentially a distance,

the model should be rejected if T (z) > T (z∗) systematically, that is if the distance from

the estimated distributions to the empirical distribution of observed values is systematically

greater than the distance between the estimated distributions and the empirical distribution

of an artificial sample drawn from these distributions. The fraction of times T (z; θs) <

T (z∗s ; θs) can be used as a p-value: a very small fraction indicates that it is unlikely to be

by chance that the observed sample is poorly represented by the model.

The p-value can be determined for each test, for each season separately, as well as for the yearly

analysis derived from the seasonal ones.

Final verdict For the overall decision whether the fitted distribution (frequentist approach) or the

median of the posterior distribution (Bayesian approach) is suited for extrapolation outside the observed

range, we use the set of rules given in table 4. These affect essentially the cases of questionable

reliability: they are to be understood as a “red flag” pointing to some irregularity in the fit that must be

looked into carefully before proceeding any further. In particular, they are meant to attract our attention

to much weaker anomalies - that would normally not indicate a rejection of the null hypothesis - and to

unusual values of the shape parameter.
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Verdict Rule

poor any H0 rejected at α = 5%

at least one H0 rejected at α = 20% or

questionable at least 3 H0 rejected at α = 30% or

ξ 6∈ [−0.15, 0.19] (supra-daily)

ξ 6∈ [−0.1, 0.3] (sub-daily)

good otherwise

Table 4: Set of rules defining the verdict, where H0 denotes the null hypothesis of any of the tests given in table
5 (i.e., H0: empirical and estimated distribution are the same).

RMSE RMSE =
√

1/n
∑ |F (x)− Sn(x)|2 RMSE =

√
1/n

∑n
i=1 |zi − Sn(x(i))|2

KS Dn = supx |F (x)− Sn(x)| Dn = 1
2n + max

1≤x≤n
|zi − i−1/2

n |

CM W 2
n = n

∫∞
−∞ |F (x)− Sn(x)|2dF (x) W 2

n = 1
12n +

∑n
i=1

(
zi − i−1/2

n

)2
AD A2

n = n
∫∞
−∞

|F (x)−Sn(x)|2
F (x){1−F (x)}dF (x) A2

n = −n− 1
n

∑n
i=1(2i− 1){ln zi + ln(1− zn+1−i)}

ADR R2
n = n

∫∞
−∞

|F (x)−Sn(x)|2
{1−F (x)} dF (x) R2

n = n
2 − 2

∑n
i=1 zi − 1

n

∑n
i=1(2i− 1) ln(1− zn+1−i)

AD2R r2n = n
∫∞
−∞

|F (x)−Sn(x)|2
{1−F (x)}2 dF (x) r2n = 2

∑n
i=1 ln(1− zi) + 1

n

∑n
i=1

2i−1
1−zn+1−i

Table 5: Empirical distribution statistics (Luceno, 2006) used for goodness-of-fit assessment (left) and their com-
putational form (right). F (x) is the theoretical Cumulative Distribution Function (CDF), and Sn(x) is the empirical
CDF, which is a step function with jumps at the order statistics. We use the notation zi = F (x(i)). RMSE: Root
mean square error; KS: Kolmogorov-Smirnoff; CM: Cramer-von Mises; AD: Anderson-Darling; ADR: Right-tail
Anderson-Darling; AD2R: Second order right-tail Anderson-Darling.

4.4 Return levels

Return levels are the name given to extreme quantiles. A return level with return period T corresponds

to a quantile with probability 1 − 1/T . The equation defining return levels expressed in terms of the

GEV parameters is given in definition 7.

Definition 7 (return level). The return level zp with return period T = 1/p is given by

zp =

µ− σ
ξ [1− {− ln(1− p)}−ξ], for ξ 6= 0

µ− σ ln{− ln(1− p)}, for ξ = 0.

where Pr{Z 6 zp} ≈ G(zp) = 1− p, with G a member of the GEV family.

As seen in figures 2 and 13, displaying the probabilities on the original scale of the data does not give

sufficient information on the tails of the distribution. Figure 26 illustrates why the return level plot (see

definition 8) is an intuitive way to present extreme value statistics. It focuses on the tail behavior of the
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distribution, by log-log transforming the x-axis. Without any additional tools, one can see if the distri-

bution is bounded or heavy tailed: if the function has a positive curvature (blue line), the distribution

is heavy tailed; if the function has a negative curvature (red line) the function is bounded. In case the

function is linear (black line), the distribution belongs to the Gumbel family.

Definition 8 (return level plot).

{(ln(yp), zp) : 0 < p < 1}

with yp = −ln(1− p).

Figure 26: Theoretical return
levels (solid lines) of Weibull
(red), Gumbel (black), and
Fréchet (blue) distributions
(figure 14). Right panel: same
as left with the estimated re-
turn levels (dashed lines -
right panel) of the respective
fitted distributions (figure 16).
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4.4.1 Return level estimation

Frequentist framework The estimation of the return levels is straightforward if the parameters of

the distribution are already estimated: one simply replaces the parameters of definition 7 with their

respective estimates and computes the return level of interest.

In general, G(zp) = 1− p has to be solved for zp. In some cases, for instance when non-stationarities

are modeled explicitly, this must be done numerically as no analytic expression exists (see section 4.5

below).

Bayesian framework In the Bayesian framework, the return level for a given return period is not just

one value, but a probability distribution —the posterior distribution —of return levels. Once again, we

make use of the large posterior sample of GEV triplets obtained via MCMC, which approximates the

posterior joint distribution of GEV parameters. For each of the S = 1000 MCMC-sampled GEVs, we

calculate a return level (as in definition 7) for the return period of interest 1/p (for instance the 50-year

return level), thus obtaining S return levels {z1p, ..., zSp}. The return level zp is then taken to be the

median of the MCMC-sample of return levels {z1p, ..., zSp}. Keep in mind that the resulting curve

appearing on the return level plot is no longer a GEV.

4.4.2 Uncertainty estimation

Frequentist framework As for the parameter uncertainties, the uncertainties of the return level esti-

mates can usually be estimated using the profile log-likelihood function.
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Definition 9. Profile log-likelihood confidence intervals for zp.

For uncertainty estimates of ẑp, one needs to reparametrize the likelihood function. For instance

one can replace µ with zp + σ
ξ

[
1− {− ln(1− p)}−ξ

]
in the likelihood function. Then one max-

imises the likelihood function with respect to σ and ξ given the observations. Approximate confi-

dence intervals can be derived via the χ2 distribution.

We see in figure 27 that the CIs are not symmetric around the return level estimates: the smaller the

probability, i.e., the longer the return period, the less symmetric the CIs. It is important to keep in

mind that the uncertainties can only be read in one direction: the confidence interval describes the

uncertainty of the return level, and not of the return period.
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Figure 27: Return level plots of theoretical distribution (solid line, figure 14), and fitted distribution (figure 16)
from samples (figure 15) of size m = 100 (dashed lines) with 95% CI via profile likelihood function (green lines).

The uncertainties of the return levels can always be estimated by parametric resampling (see section

4.2.2 for a description of the method). In particular, this is a good option when no analytic expression

of the return level exists (as is the case when non-stationarities are modeled explicitly).

Bayesian framework In the Bayesian framework, the confidence intervals are straightforward to cal-

culate. To obtain the return level, we calculated For each MCMC-sampled GEV Gs, s = 1, ..., S the

return level corresponding to the return period of interest (for instance the 50-year return level), and

took the median of the S return levels. The 95% confidence bounds are then the 2.5% quantile and

the 97.5% quantile of the same S return levels {z1p, ..., zSp}.

Figure 28 shows the return level plots for artificial data sampled from the three distributions in example

4.1. As expected from the shape parameters estimated in fig. 21, the estimated return levels are lower

than the true return levels in all three cases. The green lines are GEV distributions (the theoretical

GEVs from which we drew the artificial samples), while the red lines representing the estimated return

levels, are not.

4.5 Seasonal non-stationarities

An often tacit assumption for estimating the GEV is that the series of values within a block (of which

we will take the maximum) are independent, or to the very least, stationary with very weak long-range

dependence at extreme levels (see Coles, 2001, ch.5).
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Figure 28: Return level plots for the estimates based on artificial data samples drawn from the example Weibull
(µ = 45, σ = 11, and ξ = −0.1; left), Gumbel (µ = 45, σ = 11, and ξ = 0; center), and Fréchet (µ = 45,
σ = 11, and ξ = 0.25; right). Red line: median of the estimated return levels. Pink shading: 95% confidence
intervals. Green line: true return level.

Definition 10 (Stationarity). A series X1, X2, ..., Xn (for instance daily precipitation) is said to

be stationary if its stochastic properties are homogeneous through time.

If the X1, X2, ..., Xn series is stationary, then X1 must have the same distribution as X51, or

X101, and the joint distribution of X1, X2 must be the same as that of X51, X52 and X101, X102.

But X1, X2, and X102 can be dependent.

Non-stationarity, however, is very common in physical processes: we need only think of the daily or

seasonal cycles of sunshine duration, or of long-term trends in temperature. We have reasons to be-

lieve that precipitation processes in Switzerland cannot always be represented by a stationary process,

as processes that generate rain depend on the season. In winter, precipitation is usually brought about

by large-scale synoptic cyclones sweeping over the continent. In summer, it is often thunderstorms,

which are strongly influenced by local conditions, that cause heavy precipitation. Depending on the

geographic location, not all seasons are equally likely to host a yearly maximum, and the magnitudes

of monthly maxima of daily precipitation reveal a distinct seasonal cycle (Umbricht et al. (2013)).

From a statistical point of view, non-stationarities must be dealt with case by case, because the form

of the dependence on time is specific to the physical processes under consideration: it requires expert

knowledge and must be inferred beforehand, by other means. A common approach, once such a form

has been hypothesized, is to make the parameters of the GEV depend on time accordingly (see Coles,

2001, ch.6).

Here, we address only seasonal non-stationarities in precipitation. We adopt a pragmatic approach:

we divide the year in 4 rigid seasons (December-February, March-May, June-August, and September-

November), and perform the extreme value analysis on each season separately. We then deduce the

yearly return period from the seasonal return periods, and derive numerically the yearly return level

from the seasonal return levels.
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Details. Let Zyear denote the random variable associated with yearly maxima, and ZDJF ,

ZMAM , ZJJA, ZSON those associated with seasonal maxima in winter, spring, summer, and

autumn respectively. Let Pr{Zblock ≤ z} denote the probability that the largest value in the

block is no larger than z, where “block” means either the entire year, or one of the four seasons.

If the largest value in the year does not exceed an amount z, then neither does any of the four

seasonal maxima. We can therefore write

Pr{Zyear ≤ z} = Pr{ZDJF ≤ z} × Pr{ZMAM ≤ z} × Pr{ZJJA ≤ z} × Pr{ZSON ≤ z},

assuming that the seasonal maxima are independent of each other. In other words,

Pr{Zyear ≤ z} = GDJF (z)×GMAM (z)×GJJA(z)×GSON (z)

If p denotes the probability of exceedance of a value zp (for instance a specific amount of daily

precipitation), the yearly return period T = 1/p is very easy to calculate:

p = Pr{Zyear > zp} = 1− Pr{Zyear ≤ zp}

⇒ p = 1−GDJF (zp)×GMAM (zp)×GJJA(zp)×GSON (zp)

⇒ T =
1

1−GDJF (zp)×GMAM (zp)×GJJA(zp)×GSON (zp)

Deriving the return levels, on the other hand, requires more work. Since the product of GEV dis-

tributions with different parameters is not itself a GEV, this equation cannot be solved analytically

for zp. To obtain the yearly return level, we must resort to a numerical method, the Newton-

Raphson algorithm. It is also not possible to provide a location, scale, or shape parameter to

describe extreme behavior.

Frequentist framework For each season separately, the yearly return periods and return values are

obtained as described in the technical remark above (4.5). Confidence intervals for the return levels

are obtained by parametric resampling of each season separately, deriving the artificial yearly return

values, then taking the 2.5% and the 97.5% quantiles thereof as confidence bounds.

Bayesian framework For each season separately, the posterior distribution of the GEV parameters

must be estimated following the Bayesian inference procedure described in section 4.2.3. Recall that

the posterior distribution of the GEV parameters is approximated by a large set of MCMC-sampled

parameter triplets. The GEVs from different seasons can be put together to form an artificial year, and

the yearly return period or return level derived as in the technical remark above (4.5). Since we obtain

a distribution of yearly return levels, the 95% confidence intervals are delimited by the 2.5% and the

97.5% quantiles.
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Details. Bayesian inference applied separately to each season results in S = 1000 GEV distri-

butions in each season, for instance {GJJA1 , ..., GJJAS } for summer.

For convenience, we assume that {GDJFs , GMAM
s , GJJAs , GSONs } belong to the same artificial

year; as the seasonal maxima are assumed to be independent from each other, it doesn’t matter

which members of the series we glue together to form a year.

The probability of exceedance of z in a given year pyear can be obtained as follows:

For each S = 1, ..., 1000, we calculate the yearly probability of exceedance psyear = Pr{Zyears >

z} using {GDJFs , GMAM
s , GJJAs , GSONs } as described in the technical remark above (4.5). Then

pyear is the median of the probabilities of exceedance {p1year, ..., pSyear}, and the yearly return

period is T year = 1/pyear.

To obtain the yearly return level z corresponding to a yearly return period T year = 1/pyear, we

derive {z1, ..., zS} using the Newton-Raphson algorithm, then take the median thereof. The 95%

confidence bounds are the 2.5% and the 97.5% quantiles of {z1, ..., zS}.

4.6 Extreme Value Analysis example

Step by step extreme value analysis of 1-day precipitation recorded in Zürich / Fluntern (station abbre-

viation: SMA) between 1961 and 2013.

Figure 29 shows the daily precipitation recorded during 43 years at Zürich / Fluntern.

Figure 29: Daily precipitation time-
series recorded at station Zürich / Flun-
tern (SMA) between 01.01.1961 and
31.12.2013. The largest values per year
are circled in red.
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For the block maxima approach we need to extract the annual maxima (figure 30).

As we can see, most annual maxima occur during the summer season (table 6).

To fit the GEV we plug all annual maxima into the negative log-likelihood function and use a numerical

optimization routine (in most cases Nelder-Mead) to find the combination of location, scale, and shape

parameters that maximize the likelihood surface. The negative log-likelihood maximum of 215.4663

is reached at location: 44.25, scale: 10.39, and shape: 0.26. These are our maximum likelihood
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Figure 30: Time-series of annual maxima
recorded at station Zürich / Fluntern (SMA)
between 01.01.1961 and 31.12.2013. The cli-
matological season in which the maximum
occurs is indicated by color: December, Jan-
uary, February (DJF) - black, March, April, May
(MAM) - blue, June, July, August (JJA) - red,
and (September, October, November) SON -
turquoise.

rank amount date

1 103.1 mm 1968-09-21

2 97.8 mm 2007-08-08

3 97.2 mm 1978-08-07

4 97.1 mm 1973-06-23

5 94.2 mm 1999-05-12

rank amount date

6 80.4 mm 1988-08-15

7 75.7 mm 1987-09-25

8 67.2 mm 2000-09-20

9 66.1 mm 1993-07-05

10 60.8 mm 1972-07-21

Table 6: Top 10 annual maxima
with the occurrence date, ordered
by decreasing amount. The cli-
matological season in which the
maximum occurs is indicated by
color: DJF - black, MAM - blue,
JJA - red, and SON - turquoise.

estimates for the GEV parameters. The corresponding standard errors are 1.65, 1.36, and 0.13, re-

spectively.

• We have already discussed the goodness-of-fit of the statistical model in chapter 2, where we

showed the QQ-plot (figure 9).

• The cumulative probability function and the corresponding probability density function are shown

in the left panel of figure 31a.

• As we are interested in the extremes, we calculate return levels (figure 31b) with their confidence

intervals.

Coming back to the top 10 events, we can now calculate the probability of exceeding these 10 events.

We again express the probability in terms of return periods.

date amount return period

1968-09-21 103.1mm 34 years

2007-08-08 97.8 mm 27 years

1978-08-07 97.2 mm 27 years

1973-06-23 97.1 mm 27 years

1999-05-12 94.2 mm 24 years

date amount return period

1988-08-15 80.4 mm 12 years

1987-09-25 75.7 mm 10 years

2000-09-20 67.2 mm 6 years

1993-07-05 66.1 mm 6 years

1972-07-21 60.8 mm 4 years

Table 7: Top
10 annual max-
ima at station
Zürich / Flun-
tern (SMA)
between 1961
and 2013 and
their estimated
return period.
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(top) and probability density function
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(b) Return level plot: best estimate (blue) with 95% confidence in-
tervals (green) based on the profile likelihood.

Figure 31: Extreme value analysis of 1-day precipitation at station Zürich / Fluntern (SMA) for the period 1961-
2013.
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5 Comparison with Zeller, Geiger, Röthlisberger

Volumes

5.1 Introduction

Until recently, several sources of varying quality were available for looking up return levels of precipita-

tion. One of these was the collection of analyses by Zeller et al. (1976-1992) in 9 volumes published

by the Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL. This source will be referred

to hereafter as ZGR volumes, or simply ZGR. It is no longer in print, and while most engineers are

aware of the existence of these analyses, some do not know where they can be found. Since 2016, the

MeteoSwiss web platform documented in the present report (http://climate-extremes.ch) has put

state-of-the-art extreme value analyses of precipitation at the disposal of the public. It will subsequently

be referred to as the CE web platform, or simply CE.

The question may arise whether infrastructure designed with the help of return values provided in the

ZGR volumes is still safe. In the following, we conduct a systematic comparison of return levels in

the ZGR volumes and on the CE web platform at a subset of stations. Our purpose is to increase

awareness of differences between the ZGR volumes and the CE web platform, and encourage users

to contact MeteoSwiss for further details.

Note that at the time of writing, the CE analyses were performed using Maximum Likelihood Estimation.

In 2018, the estimation method was changed to the Bayesian approach (see section 4.2.3) applied

to seasonal maxima (see section 4.5), thereby increasing the number of stations and precipitation

durations for which the return level estimates were reliable. Nevertheless, the present comparison was

not repeated with the new results, and is based on analyses that are no longer available on CE.

5.2 Background

5.2.1 The Zeller, Geiger, Röthlisberger volumes

Zeller et al. (1976-1992) is a collection of analyses based on precipitation data gathered partly between

the mid 19th century and 1987, but for most stations between 1901 and 1970. The analyses were

conducted in the late 1970s up to the late 1980s.

The method used for estimating return levels is described in detail in Geiger et al. (1991). It estimates

Gumbel distributions for the largest value of the year by first assigning empirical return periods to the
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observed return levels, then plotting these return levels against the appropriately transformed empirical

return periods on a graph, and finally using linear regression to obtain return periods of unobserved

return levels. Should the plotted points diverge systematically from a straight line, a statistical test

depending on the differences in slope from point to point is applied to determine whether a Fréchet

distribution might be more appropriate (for details regarding the Fréchet distribution, see section 4.1).

In the following comparisons, the method used in ZGR will be referred to as LRZGR (linear regression).

Linear regression is very easy to use, and at the time could be performed without much computational

power. Unfortunately, however, it assumes that the empirical return periods are true, and that the error

for all data points is normally distributed. Thus, it disregards the large uncertainty associated with the

estimation of the tail.

Although more recent analyses exist, those presented in ZGR are still widely used in hydrology, hazard

prevention, and engineering. They do not make use of precipitation data in the last 30 years, however,

and the statistical methods are outdated.

5.2.2 climate-extremes.ch

The CE web platform provides state-of-the-art statistical analyses of heavy and extreme precipitation

for a large nation-wide network of measuring stations. The measurement period currently used for the

analyses presented on the website is 1966 to 2015 for supra-daily precipitation, also referred to as the

standard period. Sub-daily precipitation analyses are based on data gathered from 1981 to the most

recent complete year. The detailed methodological background can be found in chapter 4.

Essentially, the largest values in a year are assumed to follow a Generalized Extreme Value distri-

bution (GEV). This approach is generally referred to as Block Maxima, as each observation used for

the estimation of the GEV is itself the maximum value of a quantity (say 1-day precipitation), over a

block, i.e. a fixed number of observations (say all days in a year). The parameters of the GEV are

estimated by maximum likelihood. Uncertainties are estimated by parametric resampling. In the fol-

lowing comparisons, the method used on the CE web platform will be referred to as ML (maximum

likelihood). Although the estimation method is inadequate, ZGR can also be said to use the Block

Maxima approach in the sense that it bases its estimates on the largest value of the year.

Theoretically, the GEV distribution is the limiting distribution of the maxima of an infinite number of

observations. In addition, the observations within a block, for instance daily precipitation, are assumed

to result from the same physical process, so that they can be regarded as realizations of independent

and identically distributed random variables.

In practice, the maximum is taken over a season, or a year, which limits the number of observations

within a block to 366 or perhaps 90. Under certain circumstances (nature of the observed quantity, type

of distribution of the observed quantity,...), this may not be sufficient for the largest value to converge

towards the distribution of the maxima. In addition, the probability of rain on a given day, for instance, is

known to depend on the occurrence of precipitation on the previous day. Also, precipitation processes

are subject to seasonal variations. Thus, it is by no means unlikely that the assumptions underlying the

present estimates should be violated. In such cases, the observations might not be represented well

by the estimated GEV distribution.
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To address this issue, a goodness-of-fit (GoF) flag was introduced to attract the attention of users to

the reliability of the estimation, or lack thereof. A detailed description of this flag can be found in section

4.3.2. Where the reliability is ”poor”, the results are withheld. Where it is ”questionable”, the user is

encouraged to take a closer look at the analysis of the quality of the estimate that is available on the

web page under ”further information”.

5.3 Comparison and Interpretation

Differences between CE and ZGR estimated return levels can stem either from the estimation method

used, or from the time period covered by the data. For supra-daily precipitation, data is available over

the same period as analyzed in ZGR, and thus it is possible to disentangle the causes underlying the

differences. To this end, the method used on CE was applied to the time period covered in ZGR, and the

results subsequently compared both to ZGR, and to CE. For sub-daily precipitation, on the other hand,

this was not possible, as in ZGR the sub-daily return levels are extrapolated from the 1901-1970 supra-

daily (1 to 7-day precipitation) return levels. The extrapolation method itself has its weaknesses, and is

irrelevant here, since today the time series of sub-daily data are sufficiently long to estimate the return

levels directly. Thus, no effort was made to reproduce an elaborate but questionable extrapolation, and

the return levels of sub-daily precipitation estimated with CE and ZGR are simply compared directly.

Since the difference between return level estimates depends on the return period in question, it is

convenient to have a quantitative ”summary difference” for all six return periods extracted from ZGR

at once. We will use the root mean square difference RMSD, which is defined as follows. Let z(esta)t

and z
(estb)
t denote two different estimates esta and estb of the return levels of the tth return period

T ∈ {2.33, 10, 20, 30, 50, 100}. The root mean square difference between z(esta)t and z(estb)t is defined

as

RMSD(esta, estb) =

√√√√1

6

6∑
t=1

(z
(esta)
t − z(estb)t )2.

In summary, the following comparisons have been made:

• Raw difference: Maximum Likelihood applied to the standard period (MLSP ) on CE vs.

Linear Regression (LRZGR) in ZGR.

• Difference due to different methods: Maximum Likelihood applied to the period covered

by ZGR (MLPerZGR) vs. Linear Regression in ZGR (LRZGR). This comparison was carried

out on supra-daily data only.

• Difference due to different periods: Maximum Likelihood applied to the standard period

(MLSP ) on CE vs. Maximum Likelihood applied to the period covered by ZGR (MLPerZGR).

This comparison was carried out on supra-daily data only.

We first present a detailed analysis at two stations, showing the different estimates on the same return

level plot. Then, the results of the comparison are displayed in the form of maps of the 100-year return

level. The comparison is carried out for 10 minute, 1 hour, 1 day, 2 day, and 5 day precipitation.

The stations chosen for the comparisons form only a small subset of the stations of the MeteoSwiss

observational network. The selected subset is part of the Swiss National Basic Climatological Network
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(NBCN), which represents the climatic regions of Switzerland. More information about the Swiss NBCN

can be found in Begert (2008). For supra-daily (sub-daily) analyses, 25 (33) stations of the Swiss

NBCN were used.

5.3.1 Supra-daily Analyses

In order to illustrate the differences in return level estimates on CE and ZGR and look into the role

played by method or period, we consider 2 stations, selected for their contrasting results: Altdorf (ALT),

and la Chaux-de-Fonds (CDF). Altdorf is situated in a Föhn valley of the northern Alps and is exposed to

Föhn activity from fall to spring. La Chaux-de-Fonds is in a high valley of the Jura mountains, where the

topographic configuration favors the formation of cold air lakes. Figure 32 shows the 1 day and Figure

33 the 1 and 5 day precipitation return levels read on the graphs of ZGR (LRZGR) at return periods

of 2.33, 10, 20, 30, 50 and 100 years on the one hand, and the return levels estimated by Maximum

Likelihood for the standard period (MLSP ) and the period covered by the ZGR data (MLPerZGR) on

the other hand. The 95% confidence intervals for the Maximum Likelihood method are also displayed,

and allow us to gauge the significance of the differences. Recall that the confidence intervals do not

give us boundaries between which there is a 95% chance of finding the true value. They only tell us

how likely it is for a value to be the estimate, given the data we could observe (the likeliest one being

the best estimate).

Figure 32: Station Altdorf (ALT), 1-day precipitation: return levels estimated by Maximum Likelihood applied
to the standard period 1966-2015 on CE (blue dots, MLSP ) and to the period covered by ZGR (red dots,
MLPerZGR), and their respective 95% confidence intervals (blue and red lines). Corresponding ZGR return
levels (LRZGR) estimated by linear regression of plotting points are indicated by little crosses.
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Figure 33: Station La Chaux-de-Fonds (CDF), 1-day (above) and 5-day (below) precipitation: return levels esti-
mated by Maximum Likelihood applied to the standard period 1966-2015 on CE (blue dots, MLSP ) and to the
period covered by ZGR (red dots, MLPerZGR), and their respective 95% confidence intervals (blue and red
lines). Corresponding ZGR return levels (LRZGR) estimated by linear regression of plotting points are indicated
by little crosses. Note the different scale for the return levels.

For 1 day precipitation at Altdorf and la Chaux-de-Fonds, the raw differences in estimates (LRZGR vs.
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MLSP ) can be seen as non-significant, as they are within the confidence intervals of the CE estimates.

In practice, this means that if, for instance, the ZGR 100-year return value of about 125 mm/day at

Altdorf or 100 mm/day at la Chaux-de-Fonds had been used for design, it would still be valid today,

because it is not incompatible with the MLSP estimates obtained by Maximum Likelihood from the

data of the standard period. Although the ZGR 100-year return value is less likely than the MLSP best

estimate, it is by no means impossible, given the climate observed during the standard period. For 5-

day precipitation at la Chaux-de-Fonds, on the other hand, ZGR estimates (LRZGR) differ significantly

from CE estimates (MLSP ). This suggests that the ZGR estimates could be unnecessarily high.

For both 1 day precipitation at Altdorf, and 5 day precipitation at la Chaux-de-Fonds, the discrepancy

between ZGR and CE is essentially due to the difference in observation period, rather than to the dif-

ference in method. This is the case for a large number of NBCN stations examined: the root mean

square difference RMSD(MLSP ,MLPerZGR) between Maximum Likelihood estimates over the dif-

ferent time periods is larger than the root mean square difference RMSD(LRZGR,MLPerZGR) be-

tween return levels estimated over the same period with different methods at 88%, 75% and 75% of

stations for 1, 2, and 5 day precipitation respectively. In the three examples presented here, the return

levels appear to have decreased between the ZGR period and today. Given the small sample, how-

ever, this could very well be due to chance, rather than to a change in the processes leading to extreme

events.

A striking feature of 1 day precipitation at la Chaux-de-Fonds is that ZGR return level estimates

(LRZGR) are much lower at high return periods than the Maximum Likelihood estimates over the

same period (MLPerZGR). Here, the difference due to the method used is as large as the difference

due to the period of observation, and in this case, the differences compensate each other. Over the

ZGR period, the GEV distribution MLPerZGR is evidently heavy-tailed, and the empirically estimated

return periods used by ZGR prior to applying linear regression are overestimated. In this particular

case, ZGR estimates turn out to be nearly the same as CE estimates over the standard period MLSP .

The spatial distribution of the raw differences between ZGR and CE 100-year return levels can be

viewed for 1-day precipitation on figure 34. The differences are not very large - at least 2/3 of the sta-

tions display a difference below 10%, regardless of the sign - and there is no clear spatial pattern. For

two of the stations, Basel/Binningen and Col du Grand St-Bernard, the raw difference is significant. At

both of these stations, the reliability of the CE estimate is questionable, although this may be irrelevant,

because it concerns only the part of the distribution corresponding to relatively low return periods (not

shown). As it turns out, for all return periods T ∈ {2.33, 10, 20, 30, 50, 100} put together, ZGR return

levels differ significantly from CE return levels only for 11%, 20% and 21% of the observations, for 1

day, 2 day, and 5 day precipitation respectively. Only at Col du Grand St-Bernard is the raw difference

significant for all three supra-daily durations.

Return levels for 100-year return periods are higher on CE than in ZGR at more than half of the stations,

and the same holds true for 2 and 5 day precipitation (not shown). For station Säntis (the dark orange

circle in the north-east with a 100-year return level 20-30% lower than on CE), a remark in ZGR states

that the data is unreliable and not representative. Generally, stations at high altitude such as Säntis and

Col du Grand St-Bernard suffer from measurement difficulties related to wind and snow. The stations

Altdorf for 1-day precipitation seen in fig. 32 and La Chaux-de-Fonds for 5-day precipitation in fig. 33

display relatively large differences: the 100-year return levels are 10-20% lower on CE than in ZGR.
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Figure 34: Ratio MLSP /LRZGR of the 100-year return levels of 1-day precipitation estimated by Max-
imum Likelihood over the standard period 1966-2015, and by linear regression of plotting points in ZGR
(mostly 1901-1970). Example: in Zürich / Fluntern, with station code SMA (Säntis, station code SAE), ZGR
would underestimate (overestimate) the 100-year daily precipitation by 20-30%. Circles/squares/triangles:
good/questionable/poor reliability of the MLSP estimates. Filled (empty) shapes: the LRZGR return level is out-
side (inside) of the MLSP confidence intervals and the difference is therefore significant (non-significant).

The discrepancy between ZGR and CE can also be expressed in terms of return periods. For both

1 day precipitation at Altdorf, and 5 day precipitation at la Chaux-de-Fonds for instance, switching from

ZGR to CE corresponds to a substantial increase in return period. Figure 35 shows the “new” return

period the ZGR 100-year return level has when estimated with Maximum Likelihood applied to the

standard period MLSP on CE. It appears that over a large part of the Plateau, heavy precipitation

events are considerably more frequent than suggested by ZGR.
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Figure 35: Return period according to CE of the ZGR 100-year return levels for 1-day precipitation. Grey indi-
cates a return period < 10 years. Example: in Zürich / Fluntern, station code SMA (Säntis, station code SAE) a
precipitation amount that was exceeded on average every 100 years according to ZGR would be exceeded on
average every 25-50 years (every 300 years or less) according to CE. Filled circles/squares: good/questionable
reliability of the MLSP estimates (stations with estimates of poor reliability are omitted). The significance of the
difference in return periods cannot be assessed because confidence intervals are only estimated for return lev-
els.

5.3.2 Sub-daily Analyses

The comparisons of sub-daily analyses look quite different from the ones for supra-daily precipitation.

As can be seen in figure 36 for 1 hour precipitation, the return level on CE is lower than the return

level in ZGR at more than half the stations. For 10-minute precipitation, this proportion is nearly 80%.

In addition, the differences tend to be large everywhere, exceeding 20% (regardless of sign) at nearly

70% (80%) of stations for 1 hour (10 minute) precipitation. Viewed in terms of return periods, figure

37 shows that a 100 year event in ZGR often corresponds to an event with a return period above 300

years for MLSP . These raw differences between 100-year return levels on ZGR and CE are significant

at about 20% of the stations for 1 hour precipitation, but at more than half the stations for 10 minute

precipitation.
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Figure 36: Ratio MLSP /LRZGR of the 100-year return levels of 1-hour precipitation estimated on CE by Maxi-
mum Likelihood over the period 1981-2015, and by extrapolation of daily intensities in ZGR (mostly 1901-1970).
Example: in Zürich / Fluntern (station code SMA), ZGR would underestimate the 100-year hourly precipitation by
20-30%. Only stations with a reliable estimation of MLSP are represented. Filled (empty) circles: the LRZGR

return level is outside (inside) of the MLSP confidence intervals and the difference is therefore significant (non-
significant).
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Figure 37: Return period according to CE of the ZGR 100-year return levels for 1-hour precipitation. Grey indi-
cates a return period < 10 years. Example: in Zürich / Fluntern (station code SMA), a 100-year return level of
1-hour precipitation according to ZGR has a return period of 25-50 years according to CE. Only stations with a
reliable estimation of MLSP are represented. The significance of the difference in return periods cannot be as-
sessed because confidence intervals are only estimated for return levels.

5.4 Conclusion

The comparison of return levels presented on CE with those in ZGR at 25 (33) stations of the Me-

teoSwiss observational network for supra-daily (sub-daily) precipitation has shown that differences can

be large, especially for sub-daily precipitation. For supra-daily precipitation, only few of the raw differ-

ences are significant, while for sub-daily precipitation a large proportion - up to half, depending on the

precipitation duration considered - is.

For supra-daily precipitation, further investigation in the causes underlying the raw difference in return

levels revealed that the difference due to the time period analysed is generally much larger than the

difference due to the method. Surprisingly, the naı̈ve linear regression approach usually yields very

similar results to the maximum likelihood best estimate over the same time period. This should not,

however, justify the use of linear regression of plotting points for the estimation of return levels. Firstly,

the estimate depends on the successful guess of the type of distribution. Secondly, maximum likelihood

takes into account the lack of information in the tail of the distribution, and provides a more reliable

framework for estimating uncertainties. Even if ZGR provided information on uncertainties, these would

be strongly underestimated, especially for high return periods.

Although we can only speculate, it is probable that the method used to derive the sub-daily return levels

in ZGR plays an important role in the resulting difference with CE results. These are extrapolated from

supra-daily return levels of durations from 1 day to a week. The extrapolation is based on the assump-
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tion that intensities at different precipitation durations are related by a scaling factor depending on the

ratio between these durations. Above all, the information comes entirely from supra-daily precipitation,

which is governed by different processes than short-term precipitation.

For supra-daily precipitation, no obvious spatial pattern could be discerned. For sub-daily precipitation,

on the other hand, a large number of stations in the Prealps and south-eastern Switzerland display

lower return levels on CE than than in ZGR. This would suggest that, in these regions, design based

on ZGR information was and still is safe, but was perhaps more costly than necessary. In the Plateau,

on the other hand, the few stations examined hint at a possible underestimation of return values in

ZGR.

We strongly caution the reader not to assume that stations located between the 25 (or 33, for sub-daily

data) stations analysed here behave in one way or the other. MeteoSwiss has implemented a tool for

rapid analysis of the differences in return levels between ZGR and CE at all ZGR stations that are also

on CE. Interested users are kindly requested to order ZGR-vs-CE comparisons for stations of their

choice at klimainformation@meteoswiss.ch.
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Abbreviations

CI confidence interval

EVS extreme value statistics

EVT extreme value theory

GEV generalized extreme value (distribution)

GPD generalized Pareto distribution

BM Block Maxima

` log-likelihood function

mle maximum likelihood estimation

ML maximum likelihood

LR linear regression

PP probability-probability

QQ quantile-quantile

GoF goodness-of-fit

RMSD root mean square difference

CE web platform http://climate-extremes.ch

ZGR collection of analyses by Zeller et al. (1976-1992) in 9 volumes published by WSL

SP Standard Period
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station abbreviation station name longitude latitude altitude [m]

ALT Altdorf 8.62 46.89 438.00

ANT Andermatt 8.58 46.63 1438.00

BAS Basel / Binningen 7.58 47.54 316.17

BER Bern / Zollikofen 7.46 46.99 552.84

CDF La Chaux-de-Fonds 6.79 47.08 1018.00

CHD Château-d’Oex 7.14 46.48 1029.00

CHM Chaumont 6.98 47.05 1136.00

DAV Davos 9.84 46.81 1594.16

ELM Elm 9.18 46.92 958.00

ENG Engelberg 8.41 46.82 1035.66

GRC Grächen 7.84 46.20 1605.00

GRH Grimsel Hospiz 8.33 46.57 1980.00

GSB Col du Grand St-Bernard 7.17 45.87 2472.00

GVE Genève-Cointrin 6.13 46.25 420.00

LUG Lugano 8.96 46.00 273.00

LUZ Luzern 8.30 47.04 454.00

MER Meiringen 8.17 46.73 588.60

NEU Neuchâtel 6.95 47.00 485.00

OTL Locarno / Monti 8.79 46.17 366.75

PAY Payerne 6.94 46.81 490.00

RAG Bad Ragaz 9.50 47.02 496.00

SAE Säntis 9.34 47.25 2502.00

SBE S. Bernardino 9.18 46.46 1638.70

SIA Segl-Maria 9.76 46.43 1804.00

SIO Sion 7.33 46.22 482.00

SMA Zürich / Fluntern 8.57 47.38 555.95

STG St. Gallen 9.40 47.43 775.66
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Figure 1 Return level plot of 1-day precipitation at station Lugano for the period 1961-

2013. The blue line represents the return level estimates based on the estimated

GEV-distribution; the green lines represent their 95% confidence interval; and the

y-coordinate of the black points represent data used for estimation of the GEV-

distribution; the plotting position (x-coordinate) of the points is solely determined

by the length of the underlying record (and is not robust). . . . . . . . . . . . . . 12

Figure 2 Correspondence between cumulative probability distribution function (CDF, left),

quantile function (center) and return level plot (right). The distribution shown here

was estimated for Lugano 1-day precipitation extremes for the period 1961-2013

(cf. figure 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 3 Yearly maxima of daily precipitation at station Lugano, 1918-2017 (100 years).

Left: yearly maxima ordered chronologically (left) with rainbow colors from red to

magenta as they increase. Center: sorted in ascending order; can be understood

as an empirical version of the quantile function in fig. 2, center. Right: sorted in

ascending order, and transformed as in a return level plot. There are 2 (25;50)

measurements of daily precipitation above 170.3 mm/day (105.5 mm/day; 91.5

mm/day). Since we have 100 values in total, this means 2 (25;50) in 100 or 1 in 50

(4; 2) values. Thus 170.3, 105.5, and 91.5 mm/day can be taken as 50, 4, and 2

year “empirical” return levels, respectively. Of course, this is only one sample: we

would need a large number of samples to verify that these values truly correspond

to the return levels. Note also that, on this empirical view, the return level is not

unique, as, for instance, any value between the third and the second largest would

have had the same number of values above it. . . . . . . . . . . . . . . . . . . . 13

Figure 4 Short summary of extreme value analysis. . . . . . . . . . . . . . . . . . . . . . . 15

Figure 5 Return level plot of 1-day precipitation in Geneva for the period 1961-2013. The

blue line represents the return level estimates; the green lines represent their 95%

confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 6 Time series (left) and histogram (empirical density) (right) of annual maxima with

estimated density function (red line) taken from the extreme value analysis of 1-

day precipitation at station Genève-Cointrin for the period 1961-2013. . . . . . . . 17

Figure 7 Quantile-quantile plot of 1-day precipitation at station Genève-Cointrin for the pe-

riod 1961-2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 8 Return level plot of 1-day precipitation in Zürich for the period 1961-2013. The blue

line represents the return level estimates, and the green lines the 95% confidence

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 9 Quantile-quantile plot (left) and histogram (right) of 1-day precipitation at station

Zürich / Fluntern for the period 1961-2013. The red line on the histogram repre-

sents the probability density function (PDF) calculated from the seasonal analyses.

It is not a GEV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Figure 10 Map (left) and vertical cross-section (right) of NBCN station locations. The list

of station names, geographical location, and altitude can be found on page 69.

The vertical cross-section across the Alpine ridge is calculated as the distance to

the inner-Alpine valleys (black line on the map), defined as the Rhone and the

beginning of the Rhine valleys, connected to each other and prolonged on either

side by straight lines. To the east of the Rhine valley, the straight line is made to

pass through the station Scuol. The northern (southern) Alps are defined here

as to the north (south) of the inner-Alpine valleys. The cross-section of the Alpine

topography is computed with the USGS GTOPO30 (http://eros.usgs.gov) digital

elevation model, and is the minimum air-line distance of each grid-point center to

the inner-Alpine valleys. The thick (thin) grey line(s) represent(s) the smoothed

median (10% and 90% quantiles) of the altitude of all Swiss grid-points in a 100m

bin of distances. Note that all bins do not contain the same number of grid-points.

In fact, at the furthest distance to the south, there are so few grid-points per bin

that the altitude quantiles all give the same value. . . . . . . . . . . . . . . . . . . 22

Figure 11 supra-daily stations used on the web platform (July 2017). Blue (green): stations

below (above) 1500m. The size (color) of the dots decreases (intensifies) with

altitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 12 sub-daily stations used on the web platform (July 2017). Blue (green): stations

below (above) 1500m. The size (color) of the dots decreases (intensifies) with

altitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 13 Three extreme value distribution functions (left: cumulative distribution function

(CDF); right: probability density function (PDF)) belonging to the Weibull (red;

ξ = −0.1), Gumbel (black; ξ = 0), and Fréchet (blue; ξ = 0.25) distribution

families, respectively. All three have the same location parameter (µ = 45) and

scale parameter (σ = 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 14 Probability density functions of figure 13 (solid lines) of the Weibull (left, red,

ξ = −0.1), Gumbel (center, black, ξ = 0), and Fréchet (right, blue, ξ = 0.25)

distribution, with a location parameter of 45 and a scale parameter of 11. The

underlying histograms (with 50 breaks) show the empirical densities of samples

drawn from these three distributions. The samples can be viewed in the form of

the fake time series in figure 15. The vertical dotted line represents the sample me-

dian, while the dashed vertical line at 100 is meant to ease comparison between

panels, and with figure 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 15 Three samples of length 100 drawn from the Weibull (left, red, ξ = −0.1), Gumbel

(center, black, ξ = 0), and Fréchet (right, blue, ξ = 0.25) distribution, with a

location parameter of 45 and a scale parameter of 11. The horizontal lines indicate,

as in figure 14, the sample median (dotted line) and the value 100 (dashed line). . 31

Figure 16 Histograms of the Weibull (m = 100, left, red), Gumbel (m = 100 center, black),

and Fréchet sample data (m = 100, right, blue) seen in figure 15. Overlaid are the

PDFs fitted by Maximum Likelihood to the sampled data (dashed lines), and the

theoretical PDFs (solid lines, see figure 14) of the true distributions from which the

data was sampled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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Figure 17 Profile log-likelihood functions (solid black curves) for each parameter - location

(left), scale (center), shape (right)- estimated from the Weibull (top, m = 100),

from the Gumbel (center, m = 100) or from the Fréchet (bottom, m = 100) sample

data. The blue horizontal solid lines mark the maximum value of the profile log-

likelihood function (corresponding to the ML estimate) and the critical value (95%)

of the χ2
1 distribution. The profile likelihood 95% confidence intervals are indicated

by the 2 blue dashed vertical lines, the maximum likelihood estimate and 95%

confidence intervals are indicated by the 3 grey dashed vertical lines. Finally, the

true value is indicated by the solid vertical lines (Weibull in red, Gumbel in black,

and Fréchet in blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 18 Profile log-likelihood functions (solid black curves) for each parameter - location

(left), scale (center), shape (right) - estimated from the Weibull sample data (m =

40, top), from the Gumbel sample data (m = 40 center), and from the Fréchet

sample data (m = 40, bottom). The profile likelihood 95% confidence intervals are

indicated by the blue dashed vertical lines, the maximum likelihood best estimate

and 95% confidence intervals are indicated by the grey dashed vertical lines and

the true value is indicated by the solid vertical lines (Weibull in red, Gumbel in

black, and Fréchet in blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 19 Six fitted PDFs (dashed and dotted lines) estimated from two subsets of Weibull

sample data (m = 40, left, red), two subsets of the Gumbel sample data (m =

40, center, black), and two subsets of the Fréchet sample data (m = 40, right,

blue). The theoretical PDFs of figure 14 are represented by solid lines and are

considered as “truth”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 20 Same as fig. 16, with, in addition, the L-moments estimated PDFs (dotted lines). . 39

Figure 21 Histogram of the estimated shape parameters. Blue line: prior distribution for the

shape parameter. Red line: median of the estimated shape parameters. Green

line: stipulated true shape parameter. Pseudo-data samples of sample size 100

are drawn from the three GEV distributions of example 1 in section 4.1 (µ = 45,

σ = 11, and ξ = −0.1, 0, 0.25, respectively for the Weibull, Gumbel, and Fréchet

distributions). Left: Weibull; center: Gumbel; right: Fréchet. The shaded areas are

outside of the 95% confidence intervals. The pseudo-data samples do not appear

on the graph. Note that they differ from the samples in fig. 13. . . . . . . . . . . . 41

Figure 22 Illustration of the Metropolis algorithm. The blue line represents the function f(θ) =

p(z | θ)p(θ). It is essentially the posterior distribution p(θ|z) we are looking for, ex-

cept that it is not strictly speaking a probability distribution because it has not been

normalized by p(z). The value θnew is randomly drawn from a normal distribution

centered on θold (grey shading; corresponds to a random Gaussian walk). The

probability of jumping from θold to θnew (and adding it to the sample) depends on

whether f(θnew) > f(θold). On the left, θnew is accepted, as would any value for

which f(θnew) > f(θold). On the right, since f(θnew) < f(θold), we accept θnew
with a probability p = f(θnew)/f(θold) < 1: we “roll the dice” by drawing from

a uniform distribution on [0, 1]. Suppose we have p = 0.6; if we draw a number

between 0 and 0.6, we jump to θnew; otherwise, we stay at θold and draw a new

proposal θ from the normal distribution. . . . . . . . . . . . . . . . . . . . . . . . 42
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Figure 23 Suite of diagnostic plots for the Weibull sample (m = 100, left panel on fig. 15)

as provided by the R-package ismev. Note that the CIs are based on the ML

estimation standard errors and therefore the upper limit of the CI is underestimated. 45

Figure 24 Suite of diagnostic plots for the Gumbel sample (m = 100, center panel on fig.

15) as provided by the R-package ismev. Note that the CIs are based on the ML

estimation standard errors and therefore the upper limit of the CI is underestimated. 46

Figure 25 Suite of diagnostic plots for the Fréchet sample (m = 100, right panel on fig. 15)

as provided by the R-package ismev. Note that the CIs are based on the ML

estimation standard errors and therefore the upper limit of the CI is underestimated. 46

Figure 26 Theoretical return levels (solid lines) of Weibull (red), Gumbel (black), and Fréchet

(blue) distributions (figure 14). Right panel: same as left with the estimated return

levels (dashed lines - right panel) of the respective fitted distributions (figure 16). . 50

Figure 27 Return level plots of theoretical distribution (solid line, figure 14), and fitted distri-

bution (figure 16) from samples (figure 15) of size m = 100 (dashed lines) with 95%

CI via profile likelihood function (green lines). . . . . . . . . . . . . . . . . . . . . 51

Figure 28 Return level plots for the estimates based on artificial data samples drawn from

the example Weibull (µ = 45, σ = 11, and ξ = −0.1; left), Gumbel (µ = 45,

σ = 11, and ξ = 0; center), and Fréchet (µ = 45, σ = 11, and ξ = 0.25; right).

Red line: median of the estimated return levels. Pink shading: 95% confidence

intervals. Green line: true return level. . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 29 Daily precipitation time-series recorded at station Zürich / Fluntern (SMA) between

01.01.1961 and 31.12.2013. The largest values per year are circled in red. . . . . 54

Figure 30 Time-series of annual maxima recorded at station Zürich / Fluntern (SMA) be-

tween 01.01.1961 and 31.12.2013. The climatological season in which the max-

imum occurs is indicated by color: December, January, February (DJF) - black,

March, April, May (MAM) - blue, June, July, August (JJA) - red, and (September,

October, November) SON - turquoise. . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 31 Extreme value analysis of 1-day precipitation at station Zürich / Fluntern (SMA) for

the period 1961-2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 32 Station Altdorf (ALT), 1-day precipitation: return levels estimated by Maximum

Likelihood applied to the standard period 1966-2015 on CE (blue dots, MLSP )

and to the period covered by ZGR (red dots, MLPerZGR), and their respective

95% confidence intervals (blue and red lines). Corresponding ZGR return levels

(LRZGR) estimated by linear regression of plotting points are indicated by little

crosses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 33 Station La Chaux-de-Fonds (CDF), 1-day (above) and 5-day (below) precipita-

tion: return levels estimated by Maximum Likelihood applied to the standard pe-

riod 1966-2015 on CE (blue dots, MLSP ) and to the period covered by ZGR (red

dots, MLPerZGR), and their respective 95% confidence intervals (blue and red

lines). Corresponding ZGR return levels (LRZGR) estimated by linear regression

of plotting points are indicated by little crosses. Note the different scale for the

return levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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Figure 34 Ratio MLSP /LRZGR of the 100-year return levels of 1-day precipitation estimated

by Maximum Likelihood over the standard period 1966-2015, and by linear regres-

sion of plotting points in ZGR (mostly 1901-1970). Example: in Zürich / Flun-
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station code SMA (Säntis, station code SAE) a precipitation amount that was ex-

ceeded on average every 100 years according to ZGR would be exceeded on

average every 25-50 years (every 300 years or less) according to CE. Filled cir-

cles/squares: good/questionable reliability of the MLSP estimates (stations with

estimates of poor reliability are omitted). The significance of the difference in re-

turn periods cannot be assessed because confidence intervals are only estimated

for return levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 36 Ratio MLSP /LRZGR of the 100-year return levels of 1-hour precipitation esti-

mated on CE by Maximum Likelihood over the period 1981-2015, and by extrapo-

lation of daily intensities in ZGR (mostly 1901-1970). Example: in Zürich / Fluntern
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der klimatologischen Referenzstationen der Schweiz in das Swiss National Climatological Network

(Swiss NBCN), Technical Report MeteoSwiss, 215, 43 pp.

Coles, S. (2001), An introduction to statistical modelling of extreme values, Springer Series in Statistics.

Fisher, R., and L. Tippett (1928), On the estimation of the frequency distributions of the largest or

smalles member of a sample, Proceedings of the Cambridge Philosophical Society, 24, 180 – 190.
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